Advertisement

Compact Ring Signature in the Standard Model for Blockchain

  • Hao Ren
  • Peng Zhang
  • Qingchun Shentu
  • Joseph K. Liu
  • Tsz Hon Yuen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11125)

Abstract

Ring signature is a variant of digital signature, which makes any member in a group generate signatures representing this group with anonymity and unforgeability. In recent years, ring signatures have been employed as a kind of anonymity technology in the blockchain-based cryptocurrency such as Monero. Recently Malavolta et al. introduced a novel ring signature protocol that has anonymity and unforgeability in the standard model [33]. Their construction paradigm is based on non-interactive zero-knowledge (NIZK) arguments of knowledge and re-randomizable keys.

In this work, for the purpose of lower bandwidth cost in blockchain, we improve their ring signature by proposing a compact NIZK argument of knowledge. We show our NIZK holds under a new complexity assumption Compact Linear Knowledge of Exponent Assumption. Without the expense of security, our proposed ring signature scheme is anonymous and unforgeable in the standard model. It saves almost half of storage space of signature, and reduces almost half of pairing computations in verification process. When the ring size is large, the effect of our improvements is obvious.

Keywords

Blockchain Ring signature NIZK Argument of knowledge 

Notes

Acknowledgement

This work was supported by the National Natural Science Foundation of China (61702342), the Science and Technology Innovation Projects of Shenzhen (GJHZ 20160226202520268, JCYJ 20170302151321095, JCYJ 20170302145623566) and Tencent “Rhinoceros Birds” -Scientific Research Foundation for Young Teachers of Shenzhen University.

References

  1. 1.
    Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Constant-size ID-based linkable and revocable-iff-linked ring signature. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 364–378. Springer, Heidelberg (2006).  https://doi.org/10.1007/11941378_26CrossRefGoogle Scholar
  2. 2.
    Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Certificate based (linkable) ring signature. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol. 4464, pp. 79–92. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72163-5_8CrossRefGoogle Scholar
  3. 3.
    Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Secure ID-based linkable and revocable-iff-linked ring signature with constant-size construction. Theor. Comput. Sci. 469, 1–14 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Au, M.H., Liu, J.K., Susilo, W., Zhou, J.: Realizing fully secure unrestricted ID-based ring signature in the standard model based on HIBE. IEEE Trans. Inf. Forensics Secur. 8(12), 1909–1922 (2013)CrossRefGoogle Scholar
  5. 5.
    Au, M.H., Liu, J.K., Yuen, T.H., Wong, D.S.: ID-based ring signature scheme secure in the standard model. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 1–16. Springer, Heidelberg (2006).  https://doi.org/10.1007/11908739_1CrossRefGoogle Scholar
  6. 6.
    Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_4CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_3CrossRefGoogle Scholar
  8. 8.
    Chan, T.K., Fung, K., Liu, J.K., Wei, V.K.: Blind spontaneous anonymous group signatures for Ad Hoc groups. In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.) ESAS 2004. LNCS, vol. 3313, pp. 82–94. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30496-8_8CrossRefGoogle Scholar
  9. 9.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-46416-6_22CrossRefGoogle Scholar
  10. 10.
    Chow, S.S.M., Wei, V.K., Liu, J.K., Yuen, T.H.: Ring signatures without random oracles. In: ASIACCS 2006, pp. 297–302. ACM (2006)Google Scholar
  11. 11.
    Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in Ad Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_36CrossRefzbMATHGoogle Scholar
  12. 12.
    Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D., Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-randomizable keys. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 301–330. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49384-7_12CrossRefGoogle Scholar
  13. 13.
    Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006).  https://doi.org/10.1007/11935230_29CrossRefGoogle Scholar
  14. 14.
    Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_11CrossRefGoogle Scholar
  15. 15.
    Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_9CrossRefGoogle Scholar
  16. 16.
    Herranz, J., Sáez, G.: Forking lemmas for ring signature schemes. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-24582-7_20CrossRefGoogle Scholar
  17. 17.
    Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. J. Cryptol. 25(3), 484–527 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Huang, X., et al.: Cost-effective authentic and anonymous data sharing with forward security. IEEE Trans. Comput. 64(4), 971–983 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lai, R.W.F., Zhang, T., Chow, S.S.M., Schröder, D.: Efficient sanitizable signatures without random oracles. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 363–380. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45744-4_18CrossRefGoogle Scholar
  20. 20.
    Liu, D.Y.W., Liu, J.K., Mu, Y., Susilo, W., Wong, D.S.: Revocable ring signature. J. Comput. Sci. Technol. 22(6), 785–794 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Online/offline ring signature scheme. In: Qing, S., Mitchell, C.J., Wang, G. (eds.) ICICS 2009. LNCS, vol. 5927, pp. 80–90. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-11145-7_8CrossRefGoogle Scholar
  22. 22.
    Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Linkable ring signature with unconditional anonymity. IEEE Trans. Knowl. Data Eng. 26(1), 157–165 (2014)CrossRefGoogle Scholar
  23. 23.
    Liu, J.K., Susilo, W., Wong, D.S.: Ring signature with designated linkability. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 104–119. Springer, Heidelberg (2006).  https://doi.org/10.1007/11908739_8CrossRefGoogle Scholar
  24. 24.
    Liu, J.K., Wei, V.K., Wong, D.S.: A separable threshold ring signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 12–26. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24691-6_2CrossRefGoogle Scholar
  25. 25.
    Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for Ad Hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27800-9_28CrossRefGoogle Scholar
  26. 26.
    Liu, J.K., Wong, D.S.: On the security models of (threshold) ring signature schemes. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 204–217. Springer, Heidelberg (2005).  https://doi.org/10.1007/11496618_16CrossRefGoogle Scholar
  27. 27.
    Liu, J.K., Wong, D.S.: Linkable ring signatures: security models and new schemes. In: Gervasi, O., et al. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 614–623. Springer, Heidelberg (2005).  https://doi.org/10.1007/11424826_65CrossRefGoogle Scholar
  28. 28.
    Liu, J.K., Wong, D.S.: Enhanced security models and a generic construction approach for linkable ring signature. Int. J. Found. Comput. Sci. 17(6), 1403–1422 (2006).  https://doi.org/10.1142/S0129054106004480MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Liu, J.K., Wong, D.S.: A more efficient instantiation of witness-indistinguishable signature. I. J. Netw. Secur. 5(2), 199–204 (2007)Google Scholar
  30. 30.
    Liu, J.K., Wong, D.S.: Solutions to key exposure problem in ring signature. I. J. Netw. Secur. 6(2), 170–180 (2008)Google Scholar
  31. 31.
    Liu, J.K., Yeo, S.L., Yap, W., Chow, S.S.M., Wong, D.S., Susilo, W.: Faulty instantiations of threshold ring signature from threshold proof-of-knowledge protocol. Comput. J. 59(7), 945–954 (2016)CrossRefGoogle Scholar
  32. 32.
    Liu, J.K., Yuen, T.H., Zhou, J.: Forward secure ring signature without random oracles. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS, vol. 7043, pp. 1–14. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25243-3_1CrossRefGoogle Scholar
  33. 33.
    Malavolta, G., Schröder, D.: Efficient ring signatures in the standard model. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 128–157. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70697-9_5CrossRefzbMATHGoogle Scholar
  34. 34.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf
  35. 35.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45682-1_32CrossRefGoogle Scholar
  36. 36.
    van Saberhagen, N.: Cryptonote v 2.0 (2013). https://cryptonote.org/whitepaper.pdf
  37. 37.
    Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency monero. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 456–474. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66399-9_25CrossRefGoogle Scholar
  39. 39.
    Tsang, P.P., Au, M.H., Liu, J.K., Susilo, W., Wong, D.S.: A suite of non-pairing ID-based threshold ring signature schemes with different levels of anonymity (extended abstract). In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp. 166–183. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16280-0_11CrossRefGoogle Scholar
  40. 40.
    Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S.: Separable linkable threshold ring signatures. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 384–398. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30556-9_30CrossRefGoogle Scholar
  41. 41.
    Wijaya, D.A., Liu, J.K., Suwarsono, D.A., Zhang, P.: A new blockchain-based value-added tax system. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 471–486. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68637-0_28CrossRefGoogle Scholar
  42. 42.
    Wong, D.S., Fung, K., Liu, J.K., Wei, V.K.: On the RS-code construction of ring signature schemes and a threshold setting of RST. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 34–46. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39927-8_4CrossRefGoogle Scholar
  43. 43.
    Yang, X., Wu, W., Liu, J.K., Chen, X.: Lightweight anonymous authentication for Ad Hoc group: a ring signature approach. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 215–226. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26059-4_12CrossRefGoogle Scholar
  44. 44.
    Yuen, T.H., Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Threshold ring signature without random oracles. In: ASIACCS 2011, pp. 261–267. ACM (2011)Google Scholar
  45. 45.
    Yuen, T.H., Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Efficient linkable and/or threshold ring signature without random oracles. Comput. J. 56(4), 407–421 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Hao Ren
    • 1
  • Peng Zhang
    • 1
  • Qingchun Shentu
    • 1
  • Joseph K. Liu
    • 2
  • Tsz Hon Yuen
    • 3
  1. 1.College of Information EngineeringShenzhen UniversityShenzhenChina
  2. 2.Faculty of Information TechnologyMonash UniversityMelbourneAustralia
  3. 3.HuaweiSingaporeSingapore

Personalised recommendations