Advertisement

An Efficient and Provably Secure Private Polynomial Evaluation Scheme

  • Zhe Xia
  • Bo Yang
  • Mingwu Zhang
  • Yi Mu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11125)

Abstract

Private Polynomial Evaluation (PPE) allows the service provider to outsource the computation of a polynomial to some third party (e.g. the Cloud) in a verifiable way. And meanwhile, the polynomial remains hidden to the clients who are able to query the service. In ProvSec 2017, Bultel et al. have presented the formal security definitions for PPE, including polynomial protection (PP), proof unforgeability (UNF) and indistinguishability against chosen function attack (IND-CFA). They have introduced a PPE scheme that satisfies all these properties, and they have also shown that a polynomial commitment scheme in Asiacrypt 2010, called \(\mathsf {PolyCommit_{Ped}}\), enjoys these properties as well. In this paper, we introduce another provably secure PPE scheme, which not only has computational advantages over these two existing ones, but also relies on a much weaker security assumption. Moreover, we further explore how our PPE scheme can be implemented in the distributed fashion, so that a number of third parties jointly respond to the query but none of them could learn the polynomial unless they all collude.

Notes

Acknowledgement

This work was partially supported by the National Natural Science Foundation of China (Grant No. 61572303, 61772326, 61672010, 61672398), and Natural Science Foundation of Hubei Province (Grant No. 2017CFB303, 2017CFA012). We are also grateful to the anonymous reviewers for their valuable comments on the paper.

References

  1. 1.
    Bellare, M., Garay, J.A., Rabin, T.: Batch verification with applications to cryptography and checking. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 170–191. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054320CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM (1993)Google Scholar
  3. 3.
    Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret (extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251–260. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_19CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_13CrossRefGoogle Scholar
  6. 6.
    Bultel, X., Das, M.L., Gajera, H., Gérault, D., Giraud, M., Lafourcade, P.: Verifiable private polynomial evaluation. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 487–506. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68637-0_29CrossRefGoogle Scholar
  7. 7.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM (JACM) 51(4), 557–594 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Canetti, R., Riva, B., Rothblum, G.N.: Two protocols for delegation of computation. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 37–61. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32284-6_3CrossRefGoogle Scholar
  9. 9.
    Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifiable computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_28CrossRefGoogle Scholar
  10. 10.
    Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: 1987 28th Annual Symposium on Foundations of Computer Science, pp. 427–438. IEEE (1987)Google Scholar
  11. 11.
    Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and matrix computations, with applications. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 501–512. ACM (2012)Google Scholar
  12. 12.
    Gajera, H., Naik, S., Das, M.L.: On the security of “verifiable privacy-preserving monitoring for cloud-assisted mHealth systems”. In: Ray, I., Gaur, M.S., Conti, M., Sanghi, D., Kamakoti, V. (eds.) ICISS 2016. LNCS, vol. 10063, pp. 324–335. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49806-5_17CrossRefGoogle Scholar
  13. 13.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_25CrossRefGoogle Scholar
  14. 14.
    Guo, L., Fang, Y., Li, M., Li, P.: Verifiable privacy-preserving monitoring for cloud-assisted mHealth systems. In: 2015 IEEE Conference on Computer Communications, INFOCOM, pp. 1026–1034. IEEE (2015)Google Scholar
  15. 15.
    Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17373-8_11CrossRefGoogle Scholar
  16. 16.
    Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 245–254. ACM (1999)Google Scholar
  17. 17.
    Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_13CrossRefzbMATHGoogle Scholar
  18. 18.
    Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, SP, pp. 238–252. IEEE (2013)Google Scholar
  19. 19.
    Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28914-9_24CrossRefGoogle Scholar
  20. 20.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_9CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Computer ScienceWuhan University of TechnologyWuhanChina
  2. 2.School of Computer ScienceShaanxi Normal UniversityXi’anChina
  3. 3.School of ComputersHubei University of TechnologyWuhanChina
  4. 4.School of Computing and Information TechnologyUniversity of WollongongWollongongAustralia

Personalised recommendations