Advertisement

Secure Computation of Inner Product of Vectors with Distributed Entries and Its Applications to SVM

  • Sabyasachi Dutta
  • Nishant Nikam
  • Sushmita Ruj
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11125)

Abstract

Nowadays organizations and individuals outsource computation and storage to cloud. This poses a threat to the privacy of users. Different users encrypt their private data with (possibly) different keys to prevent any kind of outside attack on their privacy. In this outsourced model of computation where the data owners have already encrypted and uploaded private data, to enable the users for collaborative data mining a scheme is needed that can process encrypted data under multiple keys. Privacy preserving inner product computation is an essential tool on which many data mining algorithms are based. Several papers address the problem of outsourced privacy preserving inner product computation but none of them deals with the scenario when the entire database is arbitrarily partitioned among the users. We propose two outsourced privacy preserving protocols for computation of inner product of vectors when the underlying database is arbitrarily partitioned. We provide an SVM training model that preserves the privacy of the user’s data-vectors. Our scheme is based on an integer vector encryption scheme.

Keywords

Privacy preserving Support vector machine Inner product Homomorphic encryption 

References

  1. 1.
    NTL: A Library for doing Number Theory. http://www.shoup.net/ntl/
  2. 2.
    Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: ACM SIGMOD Conference on Management of Data 2000, pp. 439–450 (2000)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30576-7_18CrossRefGoogle Scholar
  4. 4.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  5. 5.
    Du, W., Atallah, M.J.: Privacy-preserving cooperative statistical analysis. In: ACSAC 2001, pp. 102–110 (2001)Google Scholar
  6. 6.
    Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On private scalar product computation for privacy-preserving data mining. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 104–120. Springer, Heidelberg (2005).  https://doi.org/10.1007/11496618_9CrossRefGoogle Scholar
  7. 7.
    Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptol. 15(3), 177–206 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Liu, F., Ng, W.K., Zhang, W.: Encrypted scalar product protocol for outsourced data mining. In: IEEE CLOUD 2014, pp. 336–343 (2014)Google Scholar
  9. 9.
    Liu, F., Ng, W.K., Zhang, W.: Encrypted SVM for outsourced data mining. IEEE CLOUD 2015, pp. 1085–1092 (2015)Google Scholar
  10. 10.
    Liu, F., Ng, W.K., Zhang, W.: Secure scalar product for big-data in MapReduce. In: IEEE Big Data Service 2015, pp. 120–129 (2015)Google Scholar
  11. 11.
    Lopez-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: STOC 2012, pp. 1219–1234 (2012)Google Scholar
  12. 12.
    Mehnaz, S., Bertino, E.: Privacy-preserving multi-party analytics over arbitrarily partitioned data. In: CLOUD 2017, pp. 342–349 (2017)Google Scholar
  13. 13.
    Peter, A., Tews, E., Katzenbeisser, S.: Efficiently outsourcing multiparty computation under multiple keys. IEEE Trans. Inf. Forensics Secur. 8(12), 2046–2058 (2013)CrossRefGoogle Scholar
  14. 14.
    Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In: KDD 2002, pp. 639–644 (2002)Google Scholar
  15. 15.
    Vaidya, J., Yu, H., Jiang, X.: Privacy-preserving SVM classification. Knowl. Inf. Syst. 14(2), 161–178 (2008)CrossRefGoogle Scholar
  16. 16.
    Wang, B., Li, M., Chow, S.S., Li, H.: Computing encrypted cloud data efficiently under multiple keys. In: IEEE CNS 2013, pp. 504–513 (2013)Google Scholar
  17. 17.
    Wang, B., Li, M., Chow, S.S., Li, H.: A tale of two clouds: computing on data encrypted under multiple keys. In: IEEE CNS 2014, pp. 337–345 (2014)Google Scholar
  18. 18.
    Yu, H., Vaidya, J., Jiang, X.: Privacy-preserving SVM classification on vertically partitioned data. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 647–656. Springer, Heidelberg (2006).  https://doi.org/10.1007/11731139_74CrossRefGoogle Scholar
  19. 19.
    Yu, H., Jiang, X., Vaidya, J.: Privacy-preserving SVM using nonlinear kernels on horizontally partitioned data. In: SAC 2006, pp. 603–610 (2006)Google Scholar
  20. 20.
    Zhang, J., Wang, X., Yiu, S.M., Jiang, Z.L., Li, J.: Secure dot product of outsourced encrypted vectors and its application to SVM. In: SCC\(@\)AsiaCCS 2017, pp. 75–82 (2017)Google Scholar
  21. 21.
    Yu, A., Lai, W.L., Payor, J.: Efficient integer vector homomorphic encryption (2015). https://courses.csail.mit.edu/6.857/2015/files/yu-lai-payor.pdf
  22. 22.
    Zhou, H., Wornell, G.W.: Efficient homomorphic encryption on integer vectors and its applications. In: ITA 2014, pp. 1–9 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.R. C. Bose Centre for Cryptology and SecurityIndian Statistical InstituteKolkataIndia
  2. 2.Cryptology and Security Research Unit, Computer and Communication Sciences DivisionIndian Statistical InstituteKolkataIndia

Personalised recommendations