Advertisement

DSH: Deniable Secret Handshake Framework

  • Yangguang Tian
  • Yingjiu Li
  • Yinghui Zhang
  • Nan Li
  • Guomin Yang
  • Yong Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11125)

Abstract

Secret handshake is a useful primitive that allows a group of authorized users to establish a shared secret key and authenticate each other anonymously. It naturally provides a certain degree of user privacy and deniability which are also desirable for some private conversations that require secure key establishment. The inherent user privacy enables a private conversation between authorized users without revealing their real identities. While deniability allows authorized users to later deny their participating in conversations. However, deniability of secret handshakes lacks a comprehensive treatment in the literature. In this paper, we investigate the deniability of existing secret handshakes. We propose the first generic framework that converts any secret handshake protocols into fully deniable ones. In particular, we define two formal security models, including session key security and deniability for our proposed framework.

Keywords

Secret handshake Deniability Generic framework 

Notes

Acknowledgements

This work is supported by the Singapore National Research Foundation under NCR Award Number NRF2014NCR-NCR001-012, the NSFC Research Fund for International Young Scientists (61750110528), National Cryptography Development Fund during the 13th Five-year Plan Period (MMJJ20170216), the Fundamental Research Funds for the Central Universities (GK201702004).

References

  1. 1.
    Balfanz, D., Durfee, G., Shankar, N., Smetters, D.K., Staddon, J., Wong, H.: Secret handshakes from pairing-based key agreements. In: IEEE (S&P 2003), pp. 180–196 (2003)Google Scholar
  2. 2.
    Borisov, N., Goldberg, I., Brewer, E.: Off-the-record communication, or, why not to use PGP. In: Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, pp. 77–84 (2004)Google Scholar
  3. 3.
    Burmester, M., Desmedt, Y.G.: Efficient and secure conference-key distribution. In: Lomas, M. (ed.) Security Protocols 1996. LNCS, vol. 1189, pp. 119–129. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-62494-5_12CrossRefGoogle Scholar
  4. 4.
    Castelluccia, C., Jarecki, S., Tsudik, G.: Secret handshakes from CA-oblivious encryption. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 293–307. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30539-2_21CrossRefGoogle Scholar
  5. 5.
    Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and key exchange. In: CCS, pp. 400–409. ACM (2006)Google Scholar
  6. 6.
    Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM (JACM) 51(6), 851–898 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gu, J., Xue, Z.: An improved efficient secret handshakes scheme with unlinkability. IEEE Commun. Lett. 15(2), 259–261 (2011)CrossRefGoogle Scholar
  8. 8.
    Huang, H., Cao, Z.: A novel and efficient unlinkable secret handshakes scheme. IEEE Commun. Lett. 13(5), 363–365 (2009)CrossRefGoogle Scholar
  9. 9.
    Jarecki, S., Kim, J., Tsudik, G.: Group secret handshakes or affiliation-hiding authenticated group key agreement. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 287–308. Springer, Heidelberg (2006).  https://doi.org/10.1007/11967668_19CrossRefGoogle Scholar
  10. 10.
    Jarecki, S., Kim, J., Tsudik, G.: Beyond secret handshakes: affiliation-hiding authenticated key exchange. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 352–369. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-79263-5_23CrossRefGoogle Scholar
  11. 11.
    Jarecki, S., Liu, X.: Private mutual authentication and conditional oblivious transfer. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 90–107. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_6CrossRefGoogle Scholar
  12. 12.
    Jiang, S., Safavi-Naini, R.: An efficient deniable key exchange protocol (extended abstract). In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 47–52. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85230-8_4CrossRefGoogle Scholar
  13. 13.
    Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052233CrossRefGoogle Scholar
  14. 14.
    Kawai, Y., Yoneyama, K., Ohta, K.: Secret handshake: strong anonymity definition and construction. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 219–229. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00843-6_20CrossRefGoogle Scholar
  15. 15.
    Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005).  https://doi.org/10.1007/11535218_33CrossRefGoogle Scholar
  16. 16.
    Manulis, M., Poettering, B., Tsudik, G.: Affiliation-hiding key exchange with untrusted group authorities. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 402–419. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13708-2_24CrossRefGoogle Scholar
  17. 17.
    Manulis, M., Poettering, B., Tsudik, G.: Taming big brother ambitions: more privacy for secret handshakes. In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 149–165. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14527-8_9CrossRefGoogle Scholar
  18. 18.
    Pass, R.: On deniability in the common reference string and random oracle model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_19CrossRefGoogle Scholar
  19. 19.
    Schäge, S.: TOPAS: 2-pass key exchange with full perfect forward secrecy and optimal communication complexity. In: CCS, pp. 1224–1235. ACM (2015)Google Scholar
  20. 20.
    Tian, Y., Zhang, S., Yang, G., Mu, Y., Yu, Y.: Privacy-preserving k-time authenticated secret handshakes. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp. 281–300. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59870-3_16CrossRefGoogle Scholar
  21. 21.
    Unger, N., Goldberg, I.: Deniable key exchanges for secure messaging. In: CCS, pp. 1211–1223. ACM (2015)Google Scholar
  22. 22.
    Xu, S., Yung, M.: K-anonymous secret handshakes with reusable credentials. In: CCS 2004, pp. 158–167. ACM (2004)Google Scholar
  23. 23.
    Yao, A.C.-C., Zhao, Y.: OAKE: a new family of implicitly authenticated Diffie-Hellman protocols. In: CCS, pp. 1113–1128. ACM (2013)Google Scholar
  24. 24.
    Yao, A.C.-C., Zhao, Y.: Privacy-preserving authenticated key-exchange over internet. IEEE TIFS 9(1), 125–140 (2014)Google Scholar
  25. 25.
    Yung, M., Zhao, Y.: Interactive zero-knowledge with restricted random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 21–40. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_2CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yangguang Tian
    • 1
  • Yingjiu Li
    • 1
  • Yinghui Zhang
    • 1
  • Nan Li
    • 2
  • Guomin Yang
    • 3
  • Yong Yu
    • 4
  1. 1.School of Information SystemSingapore Management UniversitySingaporeSingapore
  2. 2.School of Electrical Engineering and ComputingUniversity of NewcastleCallaghanAustralia
  3. 3.School of Computing and Information TechnologyUniversity of WollongongWollongongAustralia
  4. 4.School of Computer ScienceShaanxi Normal UniversityXi’anChina

Personalised recommendations