Skip to main content

Time Series Analysis: Unsupervised Anomaly Detection Beyond Outlier Detection

  • Conference paper
  • First Online:
Information Security Practice and Experience (ISPEC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11125))

Abstract

Anomaly detection on log data is an important security mechanism that allows the detection of unknown attacks. Self-learning algorithms capture the behavior of a system over time and are able to identify deviations from the learned normal behavior online. The introduction of clustering techniques enabled outlier detection on log lines independent from their syntax, thereby removing the need for parsers. However, clustering methods only produce static collections of clusters. Therefore, such approaches frequently require a reformation of the clusters in dynamic environments due to changes in technical infrastructure. Moreover, clustering alone is not able to detect anomalies that do not manifest themselves as outliers but rather as log lines with spurious frequencies or incorrect periodicity. In order to overcome these deficiencies, in this paper we introduce a dynamic anomaly detection approach that generates multiple consecutive cluster maps and connects them by deploying cluster evolution techniques. For this, we design a novel clustering model that allows tracking clusters and determining their transitions. We detect anomalous system behavior by applying time-series analysis to relevant metrics computed from the evolving clusters. Finally, we evaluate our solution on an illustrative scenario and validate the achieved quality of the retrieved anomalies with respect to the runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.mantisbt.org/.

References

  1. Biggio, B., et al.: Poisoning behavioral malware clustering. In: Proceedings of the 2014 Workshop on Artificial Intelligent and Security Workshop, pp. 27–36. ACM (2014)

    Google Scholar 

  2. Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 554–560. ACM (2006)

    Google Scholar 

  3. Chan, J., Bailey, J., Leckie, C.: Discovering correlated spatio-temporal changes in evolving graphs. Knowl. Inf. Syst. 16(1), 53–96 (2008)

    Article  Google Scholar 

  4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  5. Chi, Y., Song, X., Zhou, D., Hino, K., Tseng, B.L.: On evolutionary spectral clustering. ACM Trans. Knowl. Discov. Data (TKDD) 3(4), 17 p. (2009)

    Google Scholar 

  6. Cryer, J., Chan, K.: Time Series Analysis: With Applications in R. Springer Texts in Statistics. Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-387-75959-3. https://books.google.at/books?id=MrNY3s2difIC

    Book  MATH  Google Scholar 

  7. Greene, D., Doyle, D., Cunningham, P.: Tracking the evolution of communities in dynamic social networks. In: Advances in Social Networks Analysis and Mining (ASONAM), pp. 176–183. IEEE (2010)

    Google Scholar 

  8. He, S., Zhu, J., He, P., Lyu, M.R.: Experience report: system log analysis for anomaly detection. In: 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), pp. 207–218. IEEE (2016)

    Google Scholar 

  9. Jensen, C.S., Lin, D., Ooi, B.C.: Continuous clustering of moving objects. IEEE Trans. Knowl. Data Eng. 19(9), 1161–1174 (2007)

    Article  Google Scholar 

  10. Killick, R., Fearnhead, P., Eckley, I.A.: Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107(500), 1590–1598 (2012)

    Article  MathSciNet  Google Scholar 

  11. Lughofer, E., Sayed-Mouchaweh, M.: Autonomous data stream clustering implementing split-and-merge concepts-towards a plug-and-play approach. Inf. Sci. 304, 54–79 (2015)

    Article  Google Scholar 

  12. Pincombe, B.: Anomaly detection in time series of graphs using arma processes. Asor Bull. 24(4), 2 (2005)

    Google Scholar 

  13. Scarfone, K., Mell, P.: Guide to intrusion detection and prevention systems (IDPS). NIST Special Publication 800-94 (2007)

    Google Scholar 

  14. Skopik, F., Settanni, G., Fiedler, R., Friedberg, I.: Semi-synthetic data set generation for security software evaluation. In: 2014 Twelfth Annual International Conference on Privacy, Security and Trust (PST), pp. 156–163. IEEE (2014)

    Google Scholar 

  15. Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., Schult, R.: MONIC: modeling and monitoring cluster transitions. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 706–711. ACM (2006)

    Google Scholar 

  16. Toyoda, M., Kitsuregawa, M.: Extracting evolution of web communities from a series of web archives. In: Proceedings of the Fourteenth ACM Conference on Hypertext and Hypermedia, pp. 28–37. ACM (2003)

    Google Scholar 

  17. Wurzenberger, M., Skopik, F., Landauer, M., Greitbauer, P., Fiedler, R., Kastner, W.: Incremental clustering for semi-supervised anomaly detection applied on log data. In: Proceedings of the 12th International Conference on Availability, Reliability and Security, p. 31. ACM (2017)

    Google Scholar 

  18. Xu, K.S., Kliger, M., Hero III, A.O.: Adaptive evolutionary clustering. Data Min. Knowl. Discov. 28(2), 304–336 (2014)

    Article  MathSciNet  Google Scholar 

  19. Zhou, A., Cao, F., Qian, W., Jin, C.: Tracking clusters in evolving data streams over sliding windows. Knowl. Inf. Syst. 15(2), 181–214 (2008)

    Article  Google Scholar 

Download references

Acknowledgment

This work was partly funded by the FFG project synERGY (855457).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Landauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Landauer, M., Wurzenberger, M., Skopik, F., Settanni, G., Filzmoser, P. (2018). Time Series Analysis: Unsupervised Anomaly Detection Beyond Outlier Detection. In: Su, C., Kikuchi, H. (eds) Information Security Practice and Experience. ISPEC 2018. Lecture Notes in Computer Science(), vol 11125. Springer, Cham. https://doi.org/10.1007/978-3-319-99807-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99807-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99806-0

  • Online ISBN: 978-3-319-99807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics