Advertisement

A Generic Framework for Accountable Optimistic Fair Exchange Protocol

  • Jia-Ch’ng Loh
  • Swee-Huay Heng
  • Syh-Yuan Tan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11125)

Abstract

Optimistic Fair Exchange protocol was designed for two parties to exchange in a fair way where an arbitrator always remains offline and will be referred only if any dispute happens. There are various optimistic fair exchange protocols with different security properties in the literature. Most of the optimistic fair exchange protocols satisfy resolution ambiguity where a signature signed by the signer is computational indistinguishable from the one resolved by the arbitrator. Huang et al. proposed the first generic framework for accountable optimistic fair exchange protocol in the random oracle model where it possesses resolution ambiguity and is able to reveal the actual signer when needed. Ganjavi et al. later proposed the first generic framework in the standard model. In this paper, we propose another generic framework for accountable optimistic fair exchange protocol in the standard model using ordinary signature, convertible undeniable signature, and ring signature as the underlying building blocks.

Keywords

Accountability Convertible undeniable signature Optimistic fair exchange Ring signature 

Notes

Acknowledgement

The authors would like to acknowledge the Malaysia government’s Fundamental Research Grant Scheme (FRGS/1/2015/ICT04/MMU/03/5) for supporting this work.

References

  1. 1.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0054156CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-48071-4_28CrossRefGoogle Scholar
  3. 3.
    Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. J. Cryptol. 22(1), 114–138 (2009).  https://doi.org/10.1007/s00145-007-9011-9MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_20CrossRefGoogle Scholar
  5. 5.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48658-5_19CrossRefGoogle Scholar
  6. 6.
    Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic fair exchange in a multi-user setting. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71677-8_9CrossRefGoogle Scholar
  7. 7.
    Dodis, Y., Reyzin, L.: Breaking and repairing optimistic fair exchange from PODC 2003. In: Proceedings of the 3rd ACM Workshop on Digital Rights Management, DRM 2003, pp. 47–54. ACM, New York (2003).  https://doi.org/10.1145/947380.947387
  8. 8.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_12CrossRefGoogle Scholar
  9. 9.
    Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 393–415. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19074-2_25CrossRefGoogle Scholar
  10. 10.
    Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71677-8_13CrossRefGoogle Scholar
  11. 11.
    Ganjavi, R., Asaar, M.R., Salmasizadeh, M.: A traceable optimistic fair exchange protocol. In: 2014 11th International ISC Conference on Information Security and Cryptology, pp. 161–166, September 2014.  https://doi.org/10.1109/ISCISC.2014.6994041
  12. 12.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988).  https://doi.org/10.1137/0217017MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gu, K., Wu, N.: Constant size traceable ring signature scheme without random oracles. Cryptology ePrint Archive, Report 2018/288 (2018). https://eprint.iacr.org/2018/288
  14. 14.
    Hu, C., Li, D.: Forward-secure traceable ring signature. In: Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007), vol. 3, pp. 200–204, July 2007Google Scholar
  15. 15.
    Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Efficient optimistic fair exchange secure in the multi-user setting and chosen-key model without random oracles. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 106–120. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-79263-5_7CrossRefGoogle Scholar
  16. 16.
    Huang, X., Mu, Y., Susilo, W., Wu, W., Xiang, Y.: Optimistic fair exchange with strong resolution-ambiguity. IEEE J. Sel. Areas Commun. 29(7), 1491–1502 (2011).  https://doi.org/10.1109/JSAC.2011.110814CrossRefGoogle Scholar
  17. 17.
    Huang, X., Mu, Y., Susilo, W., Wu, W., Zhou, J., Deng, R.H.: Preserving transparency and accountability in optimistic fair exchange of digital signatures. IEEE Trans. Inf. Forensics Secur. 6(2), 498–512 (2011).  https://doi.org/10.1109/TIFS.2011.2109952CrossRefGoogle Scholar
  18. 18.
    Phong, L.T., Kurosawa, K., Ogata, W.: Provably secure convertible undeniable signatures with unambiguity. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 291–308. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15317-4_19CrossRefGoogle Scholar
  19. 19.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret: theory and applications of ring signatures. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 164–186. Springer, Heidelberg (2006).  https://doi.org/10.1007/11685654_7CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of Information Science and TechnologyMultimedia UniversityMelakaMalaysia

Personalised recommendations