Advertisement

Evolution Underway in Prokaryotes

  • Sébastien Wielgoss
  • Pierre Leblond
  • Catherine Masson-Boivin
  • Philippe Normand
Chapter

Abstract

Evolution is a phenomenon that escapes immediate attention because changes occur at a very slow pace and are often considered at odds with a religious vision of the world. Using bacteria that replicate so much faster than eukaryotes has permitted to quantify and discern tendencies. Such laboratory evolution implies growth rate, ability to use this or that substrate, but also synthesis and resistance to antibiotics and the ability to interact with eukaryotic hosts.

Keywords

Antibiotic Artificial selection Cellular network Deletion Directed evolution DNA repair Endosymbiosis Epistasis Evolutionary constraint Fitness Fixation Fixism Historical contingency Hitchhiking Hypermutagenesis Infection Inhibitor Mobile genetic element Mutagenesis Mutation Mutator Natural selection Nitrogen fixation Nodulation Phenotype Punctuated equilibrium Regulator Resistance Saprophyte Secondary metabolite Selection Soil Stress Virulence 

References

  1. Abrudan MI, Smakman F, Grimbergen AJ, Westhoff S, Miller EL, van Wezel GP, Rozen DE (2015) Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proc Natl Acad Sci U S A 112:11054–11059PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adami C (2006) Digital genetics: unravelling the genetic basis of evolution. Nat Rev Genet 7:109–118PubMedCrossRefGoogle Scholar
  3. Aigle B, Schneider D, Morilhat C, Vandewiele D, Dary A, Holl AC, Simonet JM, Decaris B (1996) An amplifiable and deletable locus of Streptomyces ambofaciens RP181110 contains a very large gene homologous to polyketide synthase genes. Microbiology 142(Pt 10):2815–2824PubMedCrossRefGoogle Scholar
  4. Aigle B, Lautru S, Spiteller D, Dickschat JS, Challis GL, Leblond P, Pernodet JL (2014) Genome mining of Streptomyces ambofaciens. J Ind Microbiol Biotechnol 41:251–263PubMedCrossRefGoogle Scholar
  5. Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrere S, Cruveiller S, Dossat C, Lajus A et al (2008) Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–1483PubMedPubMedCentralCrossRefGoogle Scholar
  6. Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 12:465–478PubMedCrossRefGoogle Scholar
  7. Audrain B, Farag M, Ryu C, Ghigo J (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39:222–233PubMedCrossRefGoogle Scholar
  8. Baharoglu Z, Mazel D (2014) SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 38:1126–1145PubMedCrossRefGoogle Scholar
  9. Barrick JE, Lenski RE (2009) Genome-wide mutational diversity in an evolving population of Escherichia coli. Cold Spring Harb Symp Quant Biol 74:119–129PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barrick JE, Lenski RE (2013) Genome dynamics during experimental evolution. Nat Rev Genet 14:827–839PubMedPubMedCentralCrossRefGoogle Scholar
  11. Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243–1247PubMedCrossRefGoogle Scholar
  12. Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the Angiosperms re-revisited. Am J Bot 97:1–8CrossRefGoogle Scholar
  13. Bellanger X, Payot S, Leblond-Bourget N, Guedon G (2014) Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 38:720–760PubMedCrossRefGoogle Scholar
  14. Berdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26CrossRefGoogle Scholar
  15. Bjedov I, Tenaillon O, Gerard B, Souza V, Denamur E, Radman M, Taddei F, Matic I (2003) Stress-induced mutagenesis in bacteria. Science 300:1404–1409PubMedCrossRefGoogle Scholar
  16. Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci U S A 105:7899–7906PubMedPubMedCentralCrossRefGoogle Scholar
  17. Blount ZD, Barrick JE, Davidson CJ, Lenski RE (2012) Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489:513–518PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bordes F, Tarquis L, Nicaud J, Marty A (2011) Isolation of a thermostable variant of Lip2 lipase from Yarrowia lipolytica by directed evolution and deeper insight into the denaturation mechanisms involved. J Biotechnol 156:117–124PubMedCrossRefGoogle Scholar
  19. Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bull JJ, Badgett MR, Wichman HA, Huelsenbeck JP, Hillis DM, Gulati A, Ho C, Molineux IJ (1997) Exceptional convergent evolution in a virus. Genetics 147:1497–1507PubMedPubMedCentralGoogle Scholar
  21. Bunet R, Song L, Mendes MV, Corre C, Hotel L, Rouhier N, Framboisier X, Leblond P, Challis GL, Aigle B (2011) Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of Kinamycins. J Bacteriol 193:1142–1153PubMedCrossRefGoogle Scholar
  22. Cajthaml T, Kresinova Z, Svobodova K, Sigler K, Rezanka T (2009) Microbial transformation of synthetic estrogen 17alpha-ethinylestradiol. Environ Pollut 157:3325–3335PubMedCrossRefGoogle Scholar
  23. Capela D, Marchetti M, Clérissi C, Perrier A, Guetta D, Gris C, Valls M, Jauneau A, Cruveiller S, Rocha EPC et al (2017) Recruitment of a lineage-specific virulence regulatory pathway promotes intracellular infection by a plant pathogen experimentally evolved into a legume symbiont. Mol Biol Evol 34:2503–2521PubMedCrossRefGoogle Scholar
  24. Cheng K, Rong X, Pinto-Tomas AA, Fernandez-Villalobos M, Murillo-Cruz C, Huang Y (2015) Population genetic analysis of Streptomyces albidoflavus reveals habitat barriers to homologous recombination in the diversification of streptomycetes. Appl Environ Microbiol 81:966–975PubMedPubMedCentralCrossRefGoogle Scholar
  25. Choulet F, Aigle B, Gallois A, Mangenot S, Gerbaud C, Truong C, Francou FX, Fourrier C, Guerineau M, Decaris B et al (2006) Evolution of the terminal regions of the streptomyces linear chromosome. Mol Biol Evol 23:2361–2369PubMedCrossRefGoogle Scholar
  26. Cooper VS, Lenski RE (2000) The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407:736–739PubMedCrossRefGoogle Scholar
  27. Cooper TF, Rozen DE, Lenski RE (2003) Parallel changes in gene expression after 20,000 generations of evolution in Escherichiacoli. Proc Natl Acad Sci U S A 100:1072–1077CrossRefGoogle Scholar
  28. Cooper TF, Remold SK, Lenski RE, Schneider D (2008) Expression profiles reveal parallel evolution of epistatic interactions involving the CRP regulon in Escherichia coli. PLoS Genet 4:e35PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, Le Roux F, Mincer T, Polz MF (2012) Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337:1228–1231PubMedCrossRefGoogle Scholar
  30. Crozat E, Winkworth C, Gaffe J, Hallin PF, Riley MA, Lenski RE, Schneider D (2010) Parallel genetic and phenotypic evolution of DNA superhelicity in experimental populations of Escherichia coli. Mol Biol Evol 27:2113–2128PubMedCrossRefGoogle Scholar
  31. Cundliffe E, Bate N, Butler A, Fish S, Gandecha A, Merson-Davies L (2001) The tylosin-biosynthetic genes of Streptomyces fradiae. Antonie Van Leeuwenhoek 79:229–234PubMedCrossRefGoogle Scholar
  32. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondresCrossRefGoogle Scholar
  33. Daubech B, Remigi P, Doin de Moura G, Marchetti M, Pouzet C, Auriac M, Gokhale C, Masson-Boivin C, Capela D (2017) Spatio-temporal control of mutualism in legumes helps spread symbiotic nitrogen fixation. elife 6:e28683PubMedPubMedCentralCrossRefGoogle Scholar
  34. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433PubMedPubMedCentralCrossRefGoogle Scholar
  35. Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9:445–453PubMedCrossRefGoogle Scholar
  36. Denamur E, Matic I (2006) Evolution of mutation rates in bacteria. Mol Microbiol 60:820–827PubMedCrossRefGoogle Scholar
  37. Dibrova DV, Galperin MY, Mulkidjanian AY (2014) Phylogenomic reconstruction of archaeal fatty acid metabolism. Environ Microbiol 16:907–918PubMedPubMedCentralCrossRefGoogle Scholar
  38. Donia MS, Fischbach MA (2015) Human Microbiota. Small molecules from the human microbiota. Science 349:1254766PubMedPubMedCentralCrossRefGoogle Scholar
  39. Eldredge N, Gould S (1973) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman, Cooper & Co, San FranciscoGoogle Scholar
  40. Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4:457–469PubMedCrossRefGoogle Scholar
  41. Eriksen DT, Hsieh PC, Lynn P, Zhao H (2013) Directed evolution of a cellobiose utilization pathway in Saccharomyces cerevisiae by simultaneously engineering multiple proteins. Microb Cell Factories 12:61CrossRefGoogle Scholar
  42. Erill I, Campoy S, Mazon G, Barbe J (2006) Dispersal and regulation of an adaptive mutagenesis cassette in the bacteria domain. Nucleic Acids Res 34:66–77PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fajardo A, Martinez-Martin N, Mercadillo M, Galan JC, Ghysels B, Matthijs S, Cornelis P, Wiehlmann L, Tummler B, Baquero F et al (2008) The neglected intrinsic resistome of bacterial pathogens. PLoS One 3:e1619PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ferenci T (2008) Bacterial physiology, regulation and mutational adaptation in a chemostat environment. Adv Microb Physiol 53:169–229PubMedCrossRefGoogle Scholar
  45. Fiegna F, Yu YT, Kadam SV, Velicer GJ (2006) Evolution of an obligate social cheater to a superior cooperator. Nature 441:310–314PubMedCrossRefGoogle Scholar
  46. Fischbach MA, Walsh CT, Clardy J (2008) The evolution of gene collectives: how natural selection drives chemical innovation. Proc Natl Acad Sci U S A 105:4601–4608PubMedPubMedCentralCrossRefGoogle Scholar
  47. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512CrossRefGoogle Scholar
  48. Foster PL (2007) Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42:373–397PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gage DJ (2002) Analysis of infection thread development using Gfp- and DsRed-expressing Sinorhizobium meliloti. J Bacteriol 184:7042–7046PubMedPubMedCentralCrossRefGoogle Scholar
  50. GBD DaHC (2015) Global, regional, and national disability-adjusted life years(DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet 386:2145–2191Google Scholar
  51. Genin S, Denny TP (2012) Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol 50:67–89PubMedCrossRefGoogle Scholar
  52. Giovannoni SJ, Cameron Thrash J, Temperton B (2014) Implications of streamlining theory for microbial ecology. ISME J 8:1553–1565PubMedPubMedCentralCrossRefGoogle Scholar
  53. Guan SH, Gris C, Cruveiller S, Pouzet C, Tasse L, Leru A, Maillard A, Medigue C, Batut J, Masson-Boivin C et al (2013) Experimental evolution of nodule intracellular infection in legume symbionts. ISME J 7:1367–1377PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN, Bontemps C, Estrada-de Los Santos P, Gross E, Dos Reis FB, Sprent JI et al (2011) Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant-Microbe Interact 24:1276–1288PubMedCrossRefGoogle Scholar
  55. Hindré T, Knibbe C, Beslon G, Schneider D (2012) New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nat Rev Microbiol 10:352–365PubMedCrossRefGoogle Scholar
  56. Hopwood D, Kieser T (1993) Conjugative plasmids of Streptomyces. In: Clewell D (ed) Bacterial conjugation. Plenum Press, New York, pp 293–311CrossRefGoogle Scholar
  57. Hungria M, Menna P, Delamuta JRM (2015) Bradyrhizobium, the ancestor of all rhizobia: Phylogeny of housekeeping and nitrogen‐fixation genes. In: de Bruijn FJ (ed) Biological nitrogen fixation. Wiley, Hoboken.  https://doi.org/10.1002/9781119053095.ch18 CrossRefGoogle Scholar
  58. Ippoliti PJ, Delateur NA, Jones KM, Beuning PJ (2012) Multiple strategies for translesion synthesis in bacteria. Cell 1:799–831CrossRefGoogle Scholar
  59. Jenke-Kodama H, Dittmann E (2005) Combinatorial polyketide biosynthesis at higher stage. Mol Syst Biol 1:2005 0025PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jenke-Kodama H, Sandmann A, Muller R, Dittmann E (2005) Evolutionary implications of bacterial polyketide synthases. Mol Biol Evol 22:2027–2039PubMedCrossRefGoogle Scholar
  61. Jones CL, Clancy M, Honnold C, Singh S, Snesrud E, Onmus-Leone F, McGann P, Ong AC, Kwak Y, Waterman P et al (2015) Fatal outbreak of an emerging clone of extensively drug-resistant Acinetobacter baumannii with enhanced virulence. Clin Infect Dis 61:145–154PubMedCrossRefGoogle Scholar
  62. Kaplan DL, Kaplan AM (1982) Thermophilic biotransformations of 2,4,6-trinitrotoluene under simulated composting conditions. Appl Environ Microbiol 44:757–760PubMedPubMedCentralGoogle Scholar
  63. Kaufman DD, Kearney PC (1970) Microbial degradation of s-triazine herbicides. Residue Rev 32:235–265PubMedGoogle Scholar
  64. Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC (2012) Experimental evolution. Trends Ecol Evol 27:547–560PubMedCrossRefGoogle Scholar
  65. Khan AI, Dinh DM, Schneider D, Lenski RE, Cooper TF (2011) Negative epistasis between beneficial mutations in an evolving bacterial population. Science 332:1193–1196PubMedCrossRefGoogle Scholar
  66. Kibota TT, Lynch M (1996) Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381:694–696PubMedCrossRefGoogle Scholar
  67. Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-rhizobium mutualism. Nature 425:78–81PubMedCrossRefGoogle Scholar
  68. Kinashi H (2011) Giant linear plasmids in Streptomyces: a treasure trove of antibiotic biosynthetic clusters. J Antibiot (Tokyo) 64:19–25CrossRefGoogle Scholar
  69. Kinkel LL, Schlatter DC, Xiao K, Baines AD (2014) Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J 8:249–256PubMedCrossRefGoogle Scholar
  70. Kirby WM (1944) Extraction of a highly potent penicillin inactivator from penicillin resistant Staphylococci. Science 99:452–453PubMedCrossRefGoogle Scholar
  71. Knopp M, Andersson DI (2015) Amelioration of the fitness costs of antibiotic resistance due to reduced outer membrane permeability by upregulation of alternative porins. Mol Biol Evol 32:3252–3263PubMedGoogle Scholar
  72. Kryazhimskiy S, Tkacik G, Plotkin J (2009) The dynamics of adaptation on correlated fitness landscapes. Proc Natl Acad Sci U S A 106:18638–18643CrossRefGoogle Scholar
  73. Kurth D, Belfiore C, Gorriti MF, Cortez N, Farias ME, Albarracin VH (2015) Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3. Front Microbiol 6:328PubMedPubMedCentralCrossRefGoogle Scholar
  74. Laureti L, Song L, Huang S, Corre C, Leblond P, Challis GL, Aigle B (2011) Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc Natl Acad Sci U S A 108:6258–6263PubMedPubMedCentralCrossRefGoogle Scholar
  75. Le Gac M, Plucain J, Hindre T, Lenski RE, Schneider D (2012) Ecological and evolutionary dynamics of coexisting lineages during a long-term experiment with Escherichia coli. Proc Natl Acad Sci U S A 109:9487–9492PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lee HH, Hsu CC, Lin YL, Chen CW (2011) Linear plasmids mobilize linear but not circular chromosomes in Streptomyces: support for the ‘end first’ model of conjugal transfer. Microbiology 157:2556–2568PubMedCrossRefGoogle Scholar
  77. Lenski RE (1991) Quantifying fitness and gene stability in microorganisms. Biotechnology 15:173–192PubMedGoogle Scholar
  78. Lewis K (2013) Platforms for antibiotic discovery. Nat Rev Drug Discov 12:371–387PubMedCrossRefGoogle Scholar
  79. Linares JF, Gustafsson I, Baquero F, Martinez JL (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A 103:19484–19489PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lind P, Farr A, Rainey P (2015) Experimental evolution reveals hidden diversity in evolutionary pathways. elife 4:e07074PubMedCentralCrossRefPubMedGoogle Scholar
  81. Liu Z, Zhao X, Bai F (2013) Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Appl Microbiol Biotechnol 97:4361–4368PubMedCrossRefGoogle Scholar
  82. Long A, Liti G, Luptak A, Tenaillon O (2015) Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nat Rev Genet 16:567–582PubMedPubMedCentralCrossRefGoogle Scholar
  83. Macdonald K, Hutchinson J, Gillett W (1964) Properties of heterozygous diploids between strains of Penicillium chrysogenum selected for high penicillin yield. Antonie Van Leeuwenhoek 30:209–224PubMedCrossRefGoogle Scholar
  84. Marchetti M, Capela D, Glew M, Cruveiller S, Chane-Woon-Ming B, Gris C, Timmers T, Poinsot V, Gilbert LB, Heeb P et al (2010) Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol 8:e1000280PubMedPubMedCentralCrossRefGoogle Scholar
  85. Marchetti M, Jauneau A, Capela D, Remigi P, Gris C, Batut J, Masson-Boivin C (2014) Shaping bacterial symbiosis with legumes by experimental evolution. Mol Plant-Microbe Interact 27:956–964PubMedCrossRefGoogle Scholar
  86. Marchetti M, Clerissi C, Yousfi Y, Gris C, Bouchez O, Rocha E, Cruveiller S, Jauneau A, Capela D, Masson-Boivin C (2017) Experimental evolution of rhizobia may lead to either extra- or intracellular symbiotic adaptation depending on the selection regime. Mol Ecol 26:1818–1831PubMedCrossRefGoogle Scholar
  87. Martinez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, Martinez-Solano L, Sanchez MB (2009) A global view of antibiotic resistance. FEMS Microbiol Rev 33:44–65PubMedCrossRefGoogle Scholar
  88. Masson-Boivin C, Sachs JL (2017) Symbiotic nitrogen fixation by rhizobia-the roots of a success story. Curr Opin Plant Biol 44:7–15PubMedCrossRefGoogle Scholar
  89. Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466PubMedCrossRefGoogle Scholar
  90. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, Bhullar K, Canova MJ, De Pascale G, Ejim L et al (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57:3348–3357PubMedPubMedCentralCrossRefGoogle Scholar
  91. Meroueh SO, Minasov G, Lee W, Shoichet BK, Mobashery S (2003) Structural aspects for evolution of beta-lactamases from penicillin-binding proteins. J Am Chem Soc 125:9612–9618PubMedCrossRefGoogle Scholar
  92. Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950PubMedCrossRefGoogle Scholar
  93. Nesme J, Cecillon S, Delmont TO, Monier JM, Vogel TM, Simonet P (2014) Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr Biol 24:1096–1100PubMedCrossRefGoogle Scholar
  94. Ochman H, Moran NA (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292:1096–1099PubMedCrossRefGoogle Scholar
  95. Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144PubMedCrossRefGoogle Scholar
  96. Palmer KL, Kos VN, Gilmore MS (2010) Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr Opin Microbiol 13:632–639PubMedPubMedCentralCrossRefGoogle Scholar
  97. Pandza S, Biukovic G, Paravic A, Dadbin A, Cullum J, Hranueli D (1998) Recombination between the linear plasmid pPZG101 and the linear chromosome of Streptomyces rimosus can lead to exchange of ends. Mol Microbiol 28:1165–1176PubMedCrossRefGoogle Scholar
  98. Pang X, Aigle B, Girardet JM, Mangenot S, Pernodet JL, Decaris B, Leblond P (2004) Functional angucycline-like antibiotic gene cluster in the terminal inverted repeats of the Streptomyces ambofaciens linear chromosome. Antimicrob Agents Chemother 48:575–588PubMedPubMedCentralCrossRefGoogle Scholar
  99. Peixoto J, Silva LP, Kruger RH (2017) Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J Hazard Mater 324:634–644PubMedCrossRefGoogle Scholar
  100. Perrier A, Peyraud R, Rengel D, Barlet X, Lucasson E, Gouzy J, Peeters N, Genin S, Guidot A (2016) Enhanced in planta fitness through adaptive mutations in EfpR, a dual regulator of virulence and metabolic functions in the plant pathogen Ralstonia solanacearum. PLoS Pathog 12:e1006044PubMedPubMedCentralCrossRefGoogle Scholar
  101. Plucain J, Hindre T, Le Gac M, Tenaillon O, Cruveiller S, Medigue C, Leiby N, Harcombe WR, Marx CJ, Lenski RE et al (2014) Epistasis and allele specificity in the emergence of a stable polymorphism in Escherichia coli. Science 343:1366–1369PubMedCrossRefGoogle Scholar
  102. Poulin-Laprade D, Burrus V (2015) A lambda cro-like repressor is essential for the induction of conjugative transfer of SXT/R391 elements in response to DNA damage. J Bacteriol 197:3822–3833PubMedPubMedCentralCrossRefGoogle Scholar
  103. Rainey PB, Rainey K (2003) Evolution of cooperation and conflict in experimental bacterial populations. Nature 425:72–74PubMedCrossRefGoogle Scholar
  104. Rainey PB, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nature 394:69–72PubMedCrossRefGoogle Scholar
  105. Raynes Y, Sniegowski PD (2014) Experimental evolution and the dynamics of genomic mutation rate modifiers. Heredity (Edinb) 113:375–380CrossRefGoogle Scholar
  106. Remigi P, Capela D, Clerissi C, Tasse L, Torchet R, Bouchez O, Batut J, Cruveiller S, Rocha EPC, Masson-Boivin C (2014) Transient hypermutagenesis accelerates the evolution of legume endosymbionts following horizontal gene transfer. PLoS Biol 12:e1001942PubMedPubMedCentralCrossRefGoogle Scholar
  107. Remigi P, Zhu J, Young JPW, Masson-Boivin C (2016) Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24:63–75PubMedCrossRefGoogle Scholar
  108. Rozen DE, Lenski RE (2000) Long-term experimental evolution in Escherichia coli. VIII. Dynamics of a balanced polymorphism. Am Nat 155:24–35PubMedGoogle Scholar
  109. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687–695PubMedCrossRefGoogle Scholar
  110. Scanlan PD, Hall AR, Lopez-Pascua LD, Buckling A (2011) Genetic basis of infectivity evolution in a bacteriophage. Mol Ecol 20:981–989PubMedCrossRefGoogle Scholar
  111. Schauner C, Dary A, Lebrihi A, Leblond P, Decaris B, Germain P (1999) Modulation of lipid metabolism and spiramycin biosynthesis in Streptomyces ambofaciens unstable mutants. Appl Environ Microbiol 65:2730–2737PubMedPubMedCentralGoogle Scholar
  112. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, New YorkGoogle Scholar
  113. Schneider D, Duperchy E, Coursange E, Lenski RE, Blot M (2000) Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 156:477–488PubMedPubMedCentralGoogle Scholar
  114. Schoenafinger G, Marahiel M (2012) Nonribosomal peptides: biosynthesis. In: Natural products in chemical biology.  https://doi.org/10.1002/9780470048672.wecb398 (ed. I John Wiley and Sons)
  115. Schwarz S, Kehrenberg C, Ojo KK (2002) Staphylococcus sciuri gene erm(33), encoding inducible resistance to macrolides, lincosamides, and streptogramin B antibiotics, is a product of recombination between erm(C) and erm(A). Antimicrob Agents Chemother 46:3621–3623PubMedPubMedCentralCrossRefGoogle Scholar
  116. Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris SL, Barry CE 3rd, Stover CK (1996) Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272:1641–1643PubMedCrossRefGoogle Scholar
  117. Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plant. Nature 363:67–69CrossRefGoogle Scholar
  118. Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416PubMedCrossRefGoogle Scholar
  119. Stonesifer J, Matsushima P, Baltz RH (1986) High frequency conjugal transfer of tylosin genes and amplifiable DNA in Streptomyces fradiae. Mol Gen Genet 202:348–355PubMedCrossRefGoogle Scholar
  120. Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K et al (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962PubMedCrossRefGoogle Scholar
  121. Sullivan J, Ronson C (1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci U S A 95:5145–5149PubMedPubMedCentralCrossRefGoogle Scholar
  122. Tenaillon O, Rodríguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, Gaut BS (2012) The molecular diversity of adaptive convergence. Science 335:457–461PubMedCrossRefGoogle Scholar
  123. Tenaillon O, Barrick J, Ribeck N, Deatherage D, Blanchard J, Dasgupta A, Wu G, Wielgoss S, Cruveiller S, Medigue C et al (2016) Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 536:165–170PubMedPubMedCentralCrossRefGoogle Scholar
  124. Thibessard A, Haas D, Gerbaud C, Aigle B, Lautru S, Pernodet JL, Leblond P (2015) Complete genome sequence of Streptomyces ambofaciens ATCC 23877, the spiramycin producer. J Biotechnol 214:117–118PubMedCrossRefGoogle Scholar
  125. Toleman M, Spencer J, Jones L, Walsh T (2012) blaNDM-1 is a chimera likely constructed in Acinetobacter baumannii. Antimicrob Agents Chemother 56:2773–2776PubMedPubMedCentralCrossRefGoogle Scholar
  126. Torres-Barcelo C, Kojadinovic M, Moxon R, MacLean RC (2015) The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic. Proc Biol Sci 282:20150885PubMedPubMedCentralCrossRefGoogle Scholar
  127. Torsvik V, Ovreas L, Thingstad TF (2002) Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296:1064–1066PubMedCrossRefGoogle Scholar
  128. Van Hofwegen DJ, Hovde CJ, Minnich SA (2016) Rapid evolution of citrate utilization by Escherichia coli by direct selection requires citT and dctA. J Bacteriol 198:1022–1034PubMedPubMedCentralCrossRefGoogle Scholar
  129. Vaz Jauri P, Bakker MG, Salomon CE, Kinkel LL (2013) Subinhibitory antibiotic concentrations mediate nutrient use and competition among soil streptomyces. PLoS One 8:e81064PubMedPubMedCentralCrossRefGoogle Scholar
  130. Velicer GJ, Kroos L, Lenski RE (1998) Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat. Proc Natl Acad Sci U S A 95:12376–12380PubMedPubMedCentralCrossRefGoogle Scholar
  131. Velicer G, Kroos L, Lenski R (2000) Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404:598–601PubMedCrossRefGoogle Scholar
  132. Velicer GJ, Raddatz G, Keller H, Deiss S, Lanz C, Dinkelacker I, Schuster SC (2006) Comprehensive mutation identification in an evolved bacterial cooperator and its cheating ancestor. Proc Natl Acad Sci U S A 103:8107–8112PubMedPubMedCentralCrossRefGoogle Scholar
  133. von Linné C (1737) Genera plantarum: eorumque characteres naturales secundum numerum, figuram, situm, et proportionem omnium fructificationis partium. Lugduni Batavorum & Apud Conradum Wishoff, LeidenCrossRefGoogle Scholar
  134. Watanabe T (1963) Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev 27:87–115PubMedPubMedCentralGoogle Scholar
  135. Weinreich DM, Delaney NF, Depristo MA, Hartl DL (2006) Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312:111–114PubMedCrossRefGoogle Scholar
  136. Wichman HA, Badgett MR, Scott LA, Boulianne CM, Bull JJ (1999) Different trajectories of parallel evolution during viral adaptation. Science 285:422–424PubMedCrossRefGoogle Scholar
  137. Wielgoss S, Barrick JE, Tenaillon O, Cruveiller S, Chane-Woon-Ming B, Medigue C, Lenski RE, Schneider D (2011) Mutation rate inferred from synonymous substitutions in a long-term evolution experiment with Escherichia coli. G3 genes. Genomes Genet (Bethesda) 1:183–186Google Scholar
  138. Wielgoss S, Barrick JE, Tenaillon O, Wiser MJ, Dittmar WJ, Cruveiller S, Chane-Woon-Ming B, Medigue C, Lenski RE, Schneider D (2013) Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. Proc Natl Acad Sci U S A 110:222–227PubMedCrossRefGoogle Scholar
  139. Wiser MJ, Ribeck N, Lenski RE (2013) Long-term dynamics of adaptation in asexual populations. Science 342:1364–1367PubMedCrossRefGoogle Scholar
  140. Woods R, Schneider D, Winkworth CL, Riley MA, Lenski RE (2006) Tests of parallel molecular evolution in a long-term experiment with Escherichia coli. Proc Natl Acad Sci U S A 103:9107–9112PubMedPubMedCentralCrossRefGoogle Scholar
  141. Woods RJ, Barrick JE, Cooper TF, Shrestha U, Kauth MR, Lenski RE (2011) Second-order selection for evolvability in a large Escherichia coli population. Science 331:1433–1436PubMedPubMedCentralCrossRefGoogle Scholar
  142. Yamasaki M, Kinashi H (2004) Two chimeric chromosomes of Streptomyces coelicolor A3(2) generated by single crossover of the wild-type chromosome and linear plasmid scp1. J Bacteriol 186:6553–6559PubMedPubMedCentralCrossRefGoogle Scholar
  143. Yang L, Jelsbak L, Marvig RL, Damkiaer S, Workman CT, Rau MH, Hansen SK, Folkesson A, Johansen HK, Ciofu O et al (2011) Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci U S A 108:7481–7486PubMedPubMedCentralCrossRefGoogle Scholar
  144. Yim G, Wang HH, Davies J (2007) Antibiotics as signalling molecules. Philos Trans R Soc Lond Ser B Biol Sci 362:1195–1200CrossRefGoogle Scholar
  145. Yu YT, Yuan X, Velicer GJ (2010) Adaptive evolution of an sRNA that controls Myxococcus development. Science 328:993PubMedPubMedCentralCrossRefGoogle Scholar
  146. Ziemert N, Lechner A, Wietz M, Millan-Aguinaga N, Chavarria KL, Jensen PR (2014) Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci U S A 111:E1130–E1139PubMedPubMedCentralCrossRefGoogle Scholar
  147. Zotchev S (2014) Genomics-based insights into the evolution of secondary metabolite biosynthesis in Actinomycete Bacteria. In: Pontarotti P (ed) Evolutionary biology: genome evolution, speciation, coevolution and origin of life. Springer, Cham, pp 35–45Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sébastien Wielgoss
    • 1
  • Pierre Leblond
    • 2
  • Catherine Masson-Boivin
    • 3
  • Philippe Normand
    • 4
  1. 1.Institute of Integrative Biology, ETH ZürichZürichSwitzerland
  2. 2.Université de Lorraine UMR INRA 1128 Dynamique des Génomes et Adaptation Microbienne (DynAMic) Faculté des Sciences et TechnologiesVandoeuvre Les Nancy CedexFrance
  3. 3.LIPM, Université de Toulouse, INRA, CNRSCastanet-TolosanFrance
  4. 4.Laboratoire d’Ecologie Microbienne, UMR 5557Université Claude Bernard Lyon 1VilleurbanneFrance

Personalised recommendations