Importance of Prokaryotes in the Functioning and Evolution of the Present and Past Geosphere and Biosphere

  • Bernard OllivierEmail author
  • Nina Zeyen
  • Gregoire Gales
  • Keyron Hickman-Lewis
  • Frédéric Gaboyer
  • Karim Benzerara
  • Frances Westall


On a volcanic and anaerobic planet characterized by abundant hydrothermal activity, physicochemical gradients and disequilibria at the local scale would have been fundamental for the emergence of life on Earth. Unfortunately, the early rock record pertaining to this existential process no longer exists, and, while chemists attempt to recreate life in a test tube, two other approaches can provide some information about early life and its metabolic processes. In the first place, phylogenetic, geological, thermodynamic, and microbiological settings suggest that disproportionation of reduced sulfurous compounds might have been essential for microbial evolution by delivering both sulfide and sulfate on Earth’s surface. These processes would have been fueled by serpentinization reactions in hydrothermal systems. Another approach is to study ancient and modern microbialites in order to better understand primitive microbial metabolic traits that occurred more than 3 billion years ago. The combination of all of these approaches to understanding early terrestrial life is of relevance to the emergence of life on other planets and satellites in the solar system, especially, for example, Mars.


Primitive metabolisms Past geosphere Past biosphere Hydrothermal systems Serpentinization Sulfur compound disproportionation Stromatolites Microbialites 



We thank Guy Fauque for revising the manuscript.


  1. Abell PI, Awramik SM, Osborne RH, Tomellini S (1982) Plio-pleistocene lacustrine stromatolites from lake Turkana, Kenya: Morphology, stratigraphy and stable isotopes. Sediment Geol 32:1–26CrossRefGoogle Scholar
  2. Alleon J, Bernard S, Le Guillou C, Marin-Carbonne J, Pont S, Beyssac O, McKeegan KD, Robert F (2016) Molecular preservation of 1.88 Ga Gunflint organic microfossils as a function of temperature and mineralogy. Nat Commun 7:11977PubMedPubMedCentralCrossRefGoogle Scholar
  3. Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441:714–718PubMedCrossRefPubMedCentralGoogle Scholar
  4. Allwood AC, Kamber BS, Walter MR, Burch IW, Kanik I (2010) Trace elements record depositional history of early Archaean stromatolitic carbonate platform. Chem Geol 270:148–163Google Scholar
  5. Allwood AC, Grotzinger JP, Knoll AH, Burch IW, Anderson MS, Coleman ML, Kanik I (2009) Controls on development and diversity of Early Archean stromatolites. Proc Natl Acad Sci USA 106:9548–9555PubMedCrossRefPubMedCentralGoogle Scholar
  6. Altwegg K, Balsiger H, Bar-Nun A, Berthelier JJ, Bieler A, Bochsler P, Briois C, Calmonte U, Combi MR, Cottin H, De Keyser J, Dhooghe F, Fiethe B, Fuselier SA, Gasc S, Gombosi TI, Hansen KC, Haessig M, Jäckel A, Kopp E, Korth A, Le Roy L, Mall U, Marty B, Mousis O, Owen T, Rème H, Rubin M, Sémon T, Tzou CY, Hunter Waite J, Wurz P (2016) Prebiotic chemicals-amino acid and phosphorus-in the coma of comet 67P/Churyumov-Gerasimenko. Sci Adv 2. PubMedPubMedCentralCrossRefGoogle Scholar
  7. Amend JP, LaRowe DE, McCollom TM, Shock EL (2013) The energetics of organic synthesis inside and outside the cell. Philos Trans R Soc B 368:20120255CrossRefGoogle Scholar
  8. Amend JP, Shock E (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25:175–243PubMedCrossRefPubMedCentralGoogle Scholar
  9. Anadón P, Utrilla R (1993) Sedimentology and isotope geochemistry of lacustrine carbonates of the Oligocene Campins Basin, north-east Spain. Sedimentology 40:699–720CrossRefGoogle Scholar
  10. Arp G (1995) Lacustrine bioherms, spring mounds, and marginal carbonates of the Ries-impact-crater (Miocene, Southern Germany). Facies 33:35–89. CrossRefGoogle Scholar
  11. Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292:1701–1704PubMedCrossRefPubMedCentralGoogle Scholar
  12. Aubrey A, Cleaves HJ, Chalmers JH, Skelley AM, Mathies RA, Grunthaner FJ, Ehrenfreund P, Bada JL (2006) Sulfate minerals and organic compounds on Mars. Geology 34:357–360CrossRefGoogle Scholar
  13. Aüllo T, Ranchou-Peyruse A, Ollivier B, Magot M (2013) Desulfotomaculum spp. and related Gram-positive sulfate-reducing bacteria in deep subsurface environments. Front Microbiol 4:362PubMedPubMedCentralCrossRefGoogle Scholar
  14. Awramik SM (1971) Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science 1974:825–827CrossRefGoogle Scholar
  15. Awramik SM (1984) Ancient stromatolites and microbial mats. In: Cohen Y, Castenlolz RW, Halvorson HO (eds) Microbial mats: stromatolites. Alan R. Liss, New York, pp 1–22Google Scholar
  16. Awramik SM, Sprinkle J (1999) Proterozoic stromatolites: the first marine evolutionary biota. Hist Biol 13:241–253CrossRefGoogle Scholar
  17. Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bak F, Cypionka H (1987) A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature 326:891–892PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bak F, Pfennig N (1987) Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189CrossRefGoogle Scholar
  20. Barabesi C, Galizzi A, Mastromei G, Rossi M, Tamburini E, Perito B (2007) Bacillus subtilis Gene cluster involved in calcium carbonate biomineralization. J Bacteriol 189:228–235PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bartley JK, Kah LC, Frank TD, Lyons TW (2014) Deep-water microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth, lithification, and implications for coniform stromatolites. Geobiology 13:15–32PubMedCrossRefPubMedCentralGoogle Scholar
  22. Batchelor MT, Burne RV, Henry BI, Jackson MJ (2004) A case for biotic morphogenesis of coniform stromatolites. Physica A Stat Mech Appl 337:319–326CrossRefGoogle Scholar
  23. Bates RG, Pinching G (1949) Acidic dissociation constant of ammonium ion at 0 °C to 50 °C, and the base strength of ammonia. J Res Natl Bur Stand 42:419–430CrossRefGoogle Scholar
  24. Bayman F, Lebrun E, Brugna M, Schoepp-Cotenet B, Giudici-Orticoni M-T, Nitschke W (2002) The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes. Philos Trans R Soc Lond 358:267–274CrossRefGoogle Scholar
  25. Bekker A, Holland HD, Wang PL, Rumble D III, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120PubMedCrossRefPubMedCentralGoogle Scholar
  26. Belkin S, Wirsen CO, Jannasch HW (1985) Biological and abiological sulfur reduction at high temperatures. Appl Environ Microbiol 49:1057–1061PubMedPubMedCentralGoogle Scholar
  27. Ben-Hania W, Joseph M, Bunk B, Sproer C, Klenk HP, Fardeau ML, Spring S (2016) Characterization of the first cultured representative of a Bacteroidetes clade specialized on the scavenging of cyanobacteria. Environ Microbiol 19:1134–1148CrossRefGoogle Scholar
  28. Benzerara K, Menguy N, López-García P, Yoon T-H, Kazmierczak J, Tyliszczak T, Guyot F, Brown GE (2006) Nanoscale detection of organic signatures in carbonate microbialites. Proc Natl Acad Sci 103:9440–9445PubMedCrossRefPubMedCentralGoogle Scholar
  29. Bertrand-Sarfati J, Moussine-Pouchkine A (1983) Platform-to-basin facies evolution; the carbonates of late Proterozoic (Vendian) Gourma (West Africa). J Sediment Res 53:275–293Google Scholar
  30. Beveridge TJ, Fyfe W (1985) Metal fixation by bacterial cell walls. Can J Earth Sci 22:1893–1898CrossRefGoogle Scholar
  31. Birgel D, Thiel V, Hinrichs K-U, Elvert M, Campbell KA, Reitner J, Farmer JD, Peckmann J (2006) Lipid biomarker patterns of methane-seep microbialites from the Mesozoic convergent margin of California. Org Geochem 37:1289–1302CrossRefGoogle Scholar
  32. Blank CE (2009) Not so old Archaea-the antiquity of biogeochemical processes in the archaeal domain of life. Geobiology 7:495–514PubMedCrossRefPubMedCentralGoogle Scholar
  33. Bode HB, Zeggel B, Silakowski B, Wenzel SC, Reichenbach H, Müller R (2003) Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2, 3 (S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol Microbiol 47:471–481PubMedCrossRefPubMedCentralGoogle Scholar
  34. Bosak T, Greene SE, Newman DK (2007) A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites. Geobiology 5:119–126PubMedPubMedCentralCrossRefGoogle Scholar
  35. Bosak T, Knoll AH, Petroff AP (2013) The meaning of stromatolites. Annu Rev Earth Planet Sci 41:21–44CrossRefGoogle Scholar
  36. Bowring SA, Williams IS (1999) Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib Mineral Petrol 134:3–16CrossRefGoogle Scholar
  37. Bowring SA, Williams IS, Compston W (1989) 3.96 Ga gneisses from the Slave province, Northwest Territories, Canada. Geology 17:971–975CrossRefGoogle Scholar
  38. Brandes JA, Boctor NZ, Cody GD, Cooper BA, Hazen RM, Yoder HS Jr (1998) Abiotic nitrogen reduction on the early Earth. Nature 395:365–367PubMedCrossRefPubMedCentralGoogle Scholar
  39. Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81PubMedCrossRefPubMedCentralGoogle Scholar
  40. Brasier M, Green O, Lindsay J, Mcloughlin N, Steele A, Stoakes C (2005) Critical testing of Earth’s oldest putative fossil assemblage from the ∼3.5Ga Apex chert, Chinaman Creek, Western Australia. Precambrian Res 140:55–102CrossRefGoogle Scholar
  41. Brasier MD, McLoughlin N, Green OR, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Philos Trans R Soc B 361:887–902CrossRefGoogle Scholar
  42. Brasier MD, Antcliffe J, Saunders M, Wacey D (2015a) Earth’s earliest fossils (3.5– 1.9 Ga): changing the picture with new approaches and new discoveries. Proc Natl Acad Sci USA 112:4859–4864PubMedCrossRefPubMedCentralGoogle Scholar
  43. Brasier AT, Rogerson MR, Mercedes-Martin R, Vonhof HB, Reijmer JJG (2015b) A Test of the biogenicity criteria established for microfossils and stromatolites on Quaternary Tufa and Speleothem materials formed in the “Twilight Zone” at Caerwys, UK. Astrobiology 15:883–900PubMedCrossRefPubMedCentralGoogle Scholar
  44. Bréhéret J-G, Fourmont A, Macaire J-J, NéGrel P (2008) Microbially mediated carbonates in the Holocene deposits from Sarliève, a small ancient lake of the French Massif Central, testify to the evolution of a restricted environment. Sedimentology 55:557–578CrossRefGoogle Scholar
  45. Brochier C, Philippe H (2002) Phylogeny: A non-hyperthermophilic ancestor for Bacteria. Nature 417:244PubMedCrossRefPubMedCentralGoogle Scholar
  46. Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036PubMedCrossRefPubMedCentralGoogle Scholar
  47. Brocks JJ, Buick R, Summons RE, Logan GA (2003) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta 67:4321–4335CrossRefGoogle Scholar
  48. Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA (2005) Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437:866–870PubMedCrossRefPubMedCentralGoogle Scholar
  49. Buick R, Dunlop JSR, Groves DI (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa Aust J Palaeontol 5:161–181CrossRefGoogle Scholar
  50. Bundeleva IA, Shirokova LS, Benezeth P, Pokrovsky OS, Kompantseva EI, Balor S (2012) Calcium carbonate precipitation by anoxygenic phototrophic bacteria. Chem Geol 291:116–131CrossRefGoogle Scholar
  51. Burne RV, Moore LS (1987) Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:241–254CrossRefGoogle Scholar
  52. Burton AS, Glavin DP, Callahan MP, Dworkin JP, Jenniskens P, Shadad MH (2011) Heterogeneous distributions of amino acids provide evidence of multiple sources within the Almahata Sitta parent body, asteroid 2008 TC3. Meteorit Planet Sci 46:1703–1712CrossRefGoogle Scholar
  53. Byerly GR, Lower DR, Walsh MM (1986) Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature 319:489–491CrossRefGoogle Scholar
  54. Cady SL, Farmer JD (1996) Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients. In: Bock GR, Goode JA (eds) Evolution of Hydrothermal Ecosystems on Earth (and Mars?), Proceedings of the CIBA Foundation Symposium, 202. Wiley, Chichester, pp 150–173Google Scholar
  55. Callow RHT, Battison L, Brasier MD (2011) Diverse microbially induced sedimentary structures from 1Ga lakes of the Diabaig Formation, Torridon Group, northwest Scotland. Sediment Geol 239:117–128CrossRefGoogle Scholar
  56. Cam N, Benzerara K, Georgelin T, Jaber M, Lambert JF, Poinsot M, Skouri-Panet F, Raimbault E, Cordier L, Jezequel D (2018) Active biomineralization of intracellular carbonates by high Ca uptake in cyanobacteria. Geobiology 16:49–61PubMedCrossRefPubMedCentralGoogle Scholar
  57. Camoin G, Casanova J, Rouchy JM, BlancValleron MM, Deconinck JF (1997) Environmental controls on perennial and ephemeral carbonate lakes: the central palaeo-Andean Basin of Bolivia during late Cretaceous to early Tertiary times. Sediment Geol 113:1–26CrossRefGoogle Scholar
  58. Campbell KA, Guido DM, Gautret P, Foucher F, Ramboz C, Westall F (2015) Geyserite in hot-spring siliceous sinter: window on Earth’s hottest terrestrial (paleo)environment and its extreme life. Earth Sci Rev 148:44–64CrossRefGoogle Scholar
  59. Cappelleti M, Zannoni D, Postec A, Ollivier B (2014) Members of the order Thermotogales: from Microbiology to hydrogen production. In: Zannoni D, De Philippis R (eds) Microbial bioenergy: hydrogen production, advances in photosynthesis and respiration including bioenergy and related processes, Chapter 9, vol 38. Springer, Dordrecht, pp 197–224Google Scholar
  60. Casaburi A, Piombino P, Nychas G-J, Villani F, Ercolini D (2015) Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol 45:83–102PubMedCrossRefPubMedCentralGoogle Scholar
  61. Centeno CM, Legendre P, Beltrán Y, Alcántara-Hernández RJ, Lidström UE, Ashby MN, Falcón LI (2012) Microbialite genetic diversity and composition relate to environmental variables. FEMS Microbiol Ecol 82:724–735PubMedCrossRefPubMedCentralGoogle Scholar
  62. Chapelle FH, O’Neill K, Bradley PM, Methé BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315PubMedCrossRefPubMedCentralGoogle Scholar
  63. Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36 degrees 14 ‘ N, MAR). Chem Geol 191:345–359CrossRefGoogle Scholar
  64. Choi O, Sang B-I (2016) Extracellular electron transfer from cathode to microbes: application for biofuel production. Biotechnol Biofuels 9:11PubMedPubMedCentralCrossRefGoogle Scholar
  65. Cnossen I, Sanz-Forcada J, Favata F, Witasse O, Zegers Z, Arnold NF (2007) Habitat of early life: solar X-ray and UV radiation at Earth’s surface 4–3.5 billion years ago. J Geophys Res 112:E02008CrossRefGoogle Scholar
  66. Cockell CS, Raven JA (2004) Zones of photosynthetic potential on Mars and the early Earth. Icarus 169:300–310CrossRefGoogle Scholar
  67. Cole JM, Rasbury ET, Montañez IP, Pedone VA, Lanzirotti A, Hanson GN (2004) Petrographic and trace element analysis of uranium-rich tufa calcite, middle Miocene Barstow Formation, California, USA: Uranium-rich tufa deposits, California. Sedimentology 51:433–453CrossRefGoogle Scholar
  68. Cooper G, Kimmich N, Belisle W, Sarinana J, Brabham K, Garrel L (2001) Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414:879–883PubMedCrossRefPubMedCentralGoogle Scholar
  69. Corkeron M, Webb GE, Moulds J, Grey K (2012) Discriminating stromatolite formation modes using rare earth element geochemistry: trapping and binding versus in situ precipitation of stromatolites from the Neoproterozoic Bitter Springs Formation, Northern Territory, Australia. Precambrian Res 212–213:194–206CrossRefGoogle Scholar
  70. Couradeau E, Benzerara K, Gerard E, Moreira D, Bernard S, Brown GE, Lopez-Garcia P (2012) An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336:459–462PubMedCrossRefPubMedCentralGoogle Scholar
  71. Couradeau E, Benzerara K, Gérard E, Estève I, Moreira D, Tavera R, López-García P (2013) Cyanobacterial calcification in modern microbialites at the submicrometer scale. Biogeosciences 10:5255–5266CrossRefGoogle Scholar
  72. Das SS, Tripathi MK (2009) Trace fossils from Talchir carbonate concretions, Giridih basin, Jharkhand. J Earth Syst Sci 118:89–100CrossRefGoogle Scholar
  73. Dass AV, Hickman-Lewis K, Brack A, Kee TP, Westall F (2016) Stochastic prebiotic chemistry within realistic geological systems. Chem Select 1:4906–4926Google Scholar
  74. Davidova MN, Tarasova NB, Mukhitova FK, Karpilova IU (1994) Carbon monoxide in metabolism of anaerobic bacteria. Can J Microbiol 40:417–425PubMedCrossRefPubMedCentralGoogle Scholar
  75. De Duve C (1995) Vital Dust. BasicBooks, New York 362 ppGoogle Scholar
  76. de Vries ST, Nijman W, Wijbrans JR, Nelson DR (2006) Stratigraphic continuity and early deformation of the central part of the Coppin Gap Greenstone Belt, Pilbara, Western Australia. Precambrian Res 147:1–27CrossRefGoogle Scholar
  77. de Vries ST, Nijman W, de Boer PL (2010) Sedimentary geology of the Palaeoarchaean Buck Ridge (South Africa) and Kittys Gap (Western Australia) volcano-sedimentary complexes. Precambrian Res 183:749–769CrossRefGoogle Scholar
  78. De Yoreo JJ, Vekilov PG (2003) Principles of crystal nucleation and growth. Rev Mineral Geochem 54:57–93CrossRefGoogle Scholar
  79. Di Giulio M (2003) The universal ancestor and the ancestor of bacteria were hyperthermophiles. J Mol Evol 57:721–730PubMedCrossRefPubMedCentralGoogle Scholar
  80. Dinh HT, Kuever J, Mußmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832PubMedCrossRefPubMedCentralGoogle Scholar
  81. Dodd MS, Papineau D, Grenne T, Slack JF, Rittner M, Pirajno F, O’Neil J, Little CTS (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543:60–64PubMedCrossRefPubMedCentralGoogle Scholar
  82. Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62:1902–1907PubMedCrossRefPubMedCentralGoogle Scholar
  83. Dunagan SP, Turner CE (2004) Regional paleohydrologic and paleoclimatic settings of wetland/lacustrine depositional systems in the Morrison Formation (Upper Jurassic), Western Interior, USA. Sediment Geol 167:269–296CrossRefGoogle Scholar
  84. Dunn SR, Valley JW (1992) Calcite–graphite isotope thermometry: a test for polymetamorphism in marble, Tudor gabbro aureole, Ontario, Canada. J Metamorph Geol 10:487–501CrossRefGoogle Scholar
  85. Dupraz C, Pattisina R, Verrecchia EP (2006) Translation of energy into morphology: simulation of stromatolite morphospace using a stochastic model. Sediment Geol 185:185–203CrossRefGoogle Scholar
  86. Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162CrossRefGoogle Scholar
  87. Ehlmann BL, Mustard JF, Murchie SL (2010) Geological setting of serpentine deposits on Mars. Geophys Res Lett 37:L06201CrossRefGoogle Scholar
  88. Farquhar J, Zerkle AL, Bekker A (2011) Geological constraints on the origin of oxygenic photosynthesis. Photosynth Res 107:11–36PubMedCrossRefPubMedCentralGoogle Scholar
  89. Fauque GD, Barton LL (2012) Hemoproteins in dissimilatory sulfate- and sulfur-reducing prokaryotes. Adv Microb Physiol 60:1–90PubMedCrossRefPubMedCentralGoogle Scholar
  90. Fedorchuk ND, Dornbos SQ, Corsetti FA, Isbell JL, Petryshyn VA, Bowles JA, Wilmeth DT (2016) Early non-marine life: evaluating the biogenicity of Mesoproterozoic fluvial-lacustrine stromatolites. Precambrian Res 275:105–118CrossRefGoogle Scholar
  91. Feulner G (2012) The faint young Sun problem. Rev Geophys 50:RG2006CrossRefGoogle Scholar
  92. Finster K (2008) Microbiological disproportionation of inorganic sulfur compounds. J Sulfur Chem 29:281–292CrossRefGoogle Scholar
  93. Foucher F, Westall F, Brandstatter F, Demets R, Parnell J, Cockell C, Edwards H, Beny JM, Brack A (2010) Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth’s atmosphere: the STONE 6 experiment. Icarus 207:616–630CrossRefGoogle Scholar
  94. Fray N, Bardyn A, Cottin H, Altwegg K, Baklouti D, Briois C, Colangeli L, Engrand C, Fischer H, Glasmachers A, Grün E, Haerendel G, Henkel H, Höfner H, Hornung K, Jessberger EK, Koch A, Krüger H, Langevin Y, Lehto H, Lehto K, Le Roy L, Merouane S, Modica P, Orthous-Daunay FR, Paquette J, Raulin F, Rynö J, Schulz R, Silén J, Siljeström S, Steiger W, Stenzel O, Stephan T, Thirkell L, Thomas R, Torkar K, Varmuza K, Wanczek KP, Zaprudin B, Kissel J, Hilchenbach M (2016) High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko. Nature 538:72–74PubMedCrossRefPubMedCentralGoogle Scholar
  95. Frederiksen TM, Finster K (2003) Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulfate and elemental sulfur. Biodegradation 14:189–198PubMedCrossRefPubMedCentralGoogle Scholar
  96. Frederiksen TM, Finster K (2004) The transformation of inorganic sulfur compounds and the assimilation of organic and inorganic carbon by the sulfur disproportionating bacterium Desulfocapsa sulfoexigens. Antonie Van Leeuwenhoek 85:141–149PubMedCrossRefPubMedCentralGoogle Scholar
  97. Furnes H, de Wit M, Staudigel H, Rosing M, Muehlenbachs K (2007) A vestige of Earth’s oldest ophiolite. Science 315:1704–1707PubMedCrossRefPubMedCentralGoogle Scholar
  98. Gallagher KL, Kading TJ, Braissant O, Dupraz C, Visscher PT (2012) Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria. Geobiology 10:518–530PubMedCrossRefPubMedCentralGoogle Scholar
  99. Galvez ME, Beyssac O, Martinez I, Benzerara K, Chaduteau C, Malvoisin B, Malavieille J (2013) Graphite formation by carbonate reduction during subduction. Nat Geosci 6:473–477CrossRefGoogle Scholar
  100. García Ruiz JM, Carnerup A, Christy AG, Welham NJ, Hyde ST (2002) Morphology: an ambiguous indicator of biogenicity. Astrobiology 2:353–369PubMedCrossRefPubMedCentralGoogle Scholar
  101. García Ruiz JM, Hyde ST, Carnerup AM, Christy AG, Kranendonk MJV, Welham NJ (2003) Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302:1194–1197PubMedCrossRefPubMedCentralGoogle Scholar
  102. Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226PubMedCrossRefPubMedCentralGoogle Scholar
  103. Garrity GM, Holt JG (2001) Phylum BIII. Thermodesulfobacteria phyl. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1. Springer, New York/Berlin/Heidelberg, p 389CrossRefGoogle Scholar
  104. Gérard E, Ménez B, Couradeau E, Moreira D, Benzerara K, Tavera R, López-García P (2013) Specific carbonate–microbe interactions in the modern microbialites of Lake Alchichica (Mexico). ISME J 7:1997–2009PubMedPubMedCentralCrossRefGoogle Scholar
  105. Giuffre AJ, Hamm LM, Han N, Yoreo JJD, Dove PM (2013) Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc Natl Acad Sci 110:9261–9266PubMedCrossRefPubMedCentralGoogle Scholar
  106. Goesmann F, Rosenbauer H, Bredehöft JH, Cabane M, Ehrenfreund P, Gautier T, Giri C, Krüger H, Le Roy L, MacDermott AJ, McKenna-Lawlor S, Meierhenrich UJ, Muñoz Caro GM, Raulin F, Roll R, Steele A, Steininger H, Sternberg R, Szopa C, Thiemann W, Ulamec S (2015) Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science 349:6247CrossRefGoogle Scholar
  107. Golubic S, Seong-Joo L (1999) Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. Eur J Phycol 34:339–348CrossRefGoogle Scholar
  108. Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435:466–469PubMedCrossRefPubMedCentralGoogle Scholar
  109. Gough DO (1981) Solar interior structure and luminosity variations. Sol Phys 74:21–34CrossRefGoogle Scholar
  110. Grigné C, Labrosse S, Tackley PJ (2005) Convective heat transfer as a function of wavelength: implications for the cooling of the Earth. J Geophys Res 110(B3):B03409CrossRefGoogle Scholar
  111. Grotzinger JP (1989) Facies and evolution of Precambrian carbonate deposition systems: emergence of the modern platform archetype. In: Crevello PD, Wilson JL, Sarg JF, Read JF (eds) Controls on carbonate platform and basin development, Special Publication, vol 44. Society of economic Paleontologists and Mineralogists, Tulsa, pp 79–106CrossRefGoogle Scholar
  112. Grotzinger JP (1990) Geochemical model for Proterozoic stromatolite decline. Am J Sci 290-A:80–243Google Scholar
  113. Grotzinger JP, Kasting JF (1993) New constraints on Precambrian ocean composition. J Geol 101:235–243PubMedCrossRefPubMedCentralGoogle Scholar
  114. Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth planet Sci 27:313–358PubMedCrossRefPubMedCentralGoogle Scholar
  115. Guida BS, Garcia-Pichel F (2016) Extreme cellular adaptations and cell differentiation required by a cyanobacterium for carbonate excavation. Proc Natl Acad Sci USA 113:5712–5717PubMedCrossRefPubMedCentralGoogle Scholar
  116. Hall JD (1883) Cryptozoon (proliferum) N. G. (an sp). New York State Mus Ann Rept 36Google Scholar
  117. Harrison TM, Blichert-Toft J, Müller W, Albarede F, Holden P, Mojzsis SJ (2005) Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310:1947–1950PubMedCrossRefPubMedCentralGoogle Scholar
  118. Hatchikian CE, Ollivier B, Garcia J-L (2001) Class I. Thermodesulfobacteria class. nov., Order I.Thermodesulfobacteriales ord. nov., Family I. Thermodesulfobacteriaceae fam. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1. Springer, New York/Berlin/Heidelberg, pp 389–390Google Scholar
  119. Hazen RM, Sverjensky DA (2010) Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb Perspect Biol 2:a002162PubMedPubMedCentralCrossRefGoogle Scholar
  120. Hedderich R, Klimmek O, Kröger A, Dirmeier R, Keller M, Stetter KO (1999) Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 22:353–381CrossRefGoogle Scholar
  121. Heubeck C (2009) An early ecosystem of Archean tidal microbial mats (Moodies Group, South Africa, ca. 3.2 Ga). Geology 37:931–934CrossRefGoogle Scholar
  122. Hofmann HJ (1973) Stromatolites: characteristics and utility. Earth Sci Rev 9:339–373CrossRefGoogle Scholar
  123. Hofmann A, Harris C (2008) Silica alteration zones in the Barberton Greenstone Belt: a window into subseafloor processes 3.5–3.3 Ga ago. Chem Geol 257:221–239CrossRefGoogle Scholar
  124. Hofmann H, Grey K, Hickman A, Thorpe R (1999) Origin of 3.45 Ga coniform stromatolites in the Warrawoona Group, Western Australia. Geol Soc Am Bull 111:1256–1262CrossRefGoogle Scholar
  125. Homann M, Heubeck C, Airo A, Tice MM (2015) Morphological adaptations of 3.22 Ga-old tufted microbial mats to Archean coastal habitats (Moodies Group, Barberton Greenstone Belt, South Africa). Precambrian Res 266:47–64CrossRefGoogle Scholar
  126. Homann M, Heubeck C, Bontognali TTR, Bouvier A-S, Baumgartner LP, Airo A (2016) Evidence for cavity-dwelling microbial life in 3.22 Ga tidal deposits. Geology 44:51–54CrossRefGoogle Scholar
  127. Jahnert RJ, Collins LB (2012) Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia. Mar Geol 303–306:115–136CrossRefGoogle Scholar
  128. Jahnke LL, Eder W, Huber R, Hope JM, Hinrichs K-U, Hayes JM, Des Marais DJ, Cady SL, Summons RE (2001) Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of Aquificales representatives. Appl Environ Microbiol 67:5179–5189PubMedPubMedCentralCrossRefGoogle Scholar
  129. Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2- billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938PubMedCrossRefPubMedCentralGoogle Scholar
  130. Jeoung J-H, Fesseler J, Goetzl S, Dobbek H (2014) Carbon monoxide. Toxic gas and fuel for anaerobes and aerobes: carbon monoxide dehydrogenases. Met Ions Life Sci 14:37–69PubMedCrossRefPubMedCentralGoogle Scholar
  131. Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL (2008) The Miller volcanic spark discharge experiment. Science 322:404PubMedCrossRefPubMedCentralGoogle Scholar
  132. Jones B, Renaut RW, Rosen MR (2001) Taphonomy of silicified filamentous microbes—implications for identification. PALAIOS 16:580–592CrossRefGoogle Scholar
  133. Kah LC, Grotzinger JP (1992) Early Proterozoic (1.9 Ga) thrombolites of the Rocknest Formation, Northwest Territories, Canada. PALAIOS 7:305CrossRefGoogle Scholar
  134. Kalkovsky E (1908) Oolith und stromatolith im norddeutschen Buntsandstein. Zeitschrift der Deutschen Geologischen Gesellschaft 60:68–125Google Scholar
  135. Kamber BS (2015) The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Res 258:48–82CrossRefGoogle Scholar
  136. Kamber BS, Webb GE (2001) The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochim Cosmochim Acta 65:2509–2525CrossRefGoogle Scholar
  137. Kamber BS, Bolhar R, Webb GE (2004) Geochemistry of late Archaean stromatolites from Zimbabwe: evidence for microbial life in restricted epicontinental seas. Precambrian Res 132:379–399CrossRefGoogle Scholar
  138. Kardar M, Parisi G, Zhang Y-C (1986) Dynamic scaling of growing interfaces. Phys Rev Lett 56:889–892PubMedCrossRefPubMedCentralGoogle Scholar
  139. Kasting JF (1982) Stability of ammonia in the primitive terrestrial atmosphere. J Geophys Res 87:3091–3098CrossRefGoogle Scholar
  140. Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926PubMedCrossRefGoogle Scholar
  141. Kasting JF, Catling D (2003) Evolution of a habitable planet. Annu Rev Astron Astrophys 41:429–463CrossRefGoogle Scholar
  142. Khodadad CLM, Foster JS (2012) Metagenomic and metabolic profiling of nonlithifying and lithifying stromatolitic mats of Highborne Cay, The Bahamas. PLoS One 7:e38229PubMedPubMedCentralCrossRefGoogle Scholar
  143. Knauth LP, Lowe DR (2003) High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Bull Geol Soc Am 115:566–580CrossRefGoogle Scholar
  144. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334PubMedCrossRefPubMedCentralGoogle Scholar
  145. Knoll AH, Carroll SB (1999) Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–2137PubMedCrossRefPubMedCentralGoogle Scholar
  146. Knoll AH, Fairchild IJ, Swett K (1993) Calcified microbes in Neoproterozoic carbonates; implications for our understanding of the Proterozoic/Cambrian transition. PALAIOS 8:512–525PubMedCrossRefPubMedCentralGoogle Scholar
  147. Knoll AH, Bergmann KD, Strauss JV (2016) Life: the first two billion years. Philos Trans R Soc B-Biol Sci 371:20150493CrossRefGoogle Scholar
  148. Konn C, Charlou JL, Donval JP, Holm NG, Dehairs F, Bouillon S (2009) Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents. Chem Geol 258:299–314CrossRefGoogle Scholar
  149. Krämer M, Cypionka H (1989) Sulfate formation via ATP sulfurylase in thiosulfate- and sulfite-disproportionating bacteria. Arch Microbiol 151:232–237CrossRefGoogle Scholar
  150. Krumbein WE (1983) Stromatolites – the challenge of a term in space and time. Precambrian Res 20:493–531CrossRefGoogle Scholar
  151. Kusakabe M, Komoda Y, Takano B, Abiko T (2000) Sulfur isotopics effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications of the Δ 34S variations of dissolved bisulfate and elemental sulfur from active crater lakes. J Volcanol Geotherm Res 97:287–307CrossRefGoogle Scholar
  152. Lepot K, Benzerara K, Rividi N, Cotte M, Brown GE, Philippot P (2009) Organic matter heterogeneities in 2.72Ga stromatolites: alteration versus preservation by sulfur incorporation. Geochim Cosmochim Acta 73:6579–6599CrossRefGoogle Scholar
  153. Lindqvist JK (1994) Lacustrine stromatolites and oncoids: Manuherikia Group (MIOCENE), New Zealand. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic Stromatolites II. Springer, Dordrecht, pp 227–254CrossRefGoogle Scholar
  154. Link MH, Osborne RH, Awramik SM (1978) Lacustrine stromatolites and associated sediments of the Pliocene Ridge Route Formation, Ridge Basin, California. J Sediment Res 48:143–157Google Scholar
  155. Liu Y, Beer LL, Whitman WB (2012) Methanogens: a window into ancient sulfur metabolism. Trends Microbiol 20:251–258PubMedCrossRefGoogle Scholar
  156. Logan B (1961) Cryptozoon and associate stromatolites from the recent, Shark Bay, Western-Australia. J Geol 69:517–533CrossRefGoogle Scholar
  157. López-García P, Kazmierczak J, Benzerara K, Kempe S, Guyot F, Moreira D (2005) Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles 9:263–274PubMedCrossRefGoogle Scholar
  158. Lowe DR (1980) Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature 284:441–443CrossRefGoogle Scholar
  159. Lowe DR (1983) Restricted shallow water sedimentation of 3.4 Byr-old stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara block, Western Australia. Precambrian Res 19:239–283CrossRefGoogle Scholar
  160. Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22:387–390PubMedCrossRefGoogle Scholar
  161. Lowe DR, Byerly GR (1999) Stratigraphy of the west-central part of the Barbeton Greenstone Belt, South Africa. Special Paper of the Geol Amer Soc 329:1–36Google Scholar
  162. Manhes G, Allègre CJ, Dupré B, Hamelin B (1980) Lead isotope study of basic-ultrabasic layered complexes: speculations about the age of the earth and primitive mantle characteristics. Earth Planet Sci Lett 47:370–382CrossRefGoogle Scholar
  163. Mardanov AV, Beletsky AV, Kadnikov VV, Slobodkin AI, Ravin NV (2016) Genome analysis of Thermosulfurimonas dismutans, the first thermophilic sulfur-disproportionating bacterium of the phylum Thermodesulfobacteria. Front Microbiol 7.
  164. Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41CrossRefGoogle Scholar
  165. Marvasi M, Visscher PT, Perito B, Mastromei G, Casillas-Martínez L (2010) Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant. FEMS Microbiol Ecol 71:341–350PubMedCrossRefPubMedCentralGoogle Scholar
  166. Maurette M, Brack A (2006) Cometary petroleum in Hadean time? Meteorit Planet Sci 41:5247Google Scholar
  167. McCaffrey VP, Zellner NEB, Waun CM, Bennett ER, Earl EK (2014) Reactivity and survivability of glycolaldehyde in simulated meteorite impact experiments. Orig Life Evol Biosph 44:29–42PubMedCrossRefPubMedCentralGoogle Scholar
  168. McCollom TM (2011) What can carbon isotopes tell us about sources of reduced carbon in rocks from the Early Earth. In: Golding SD, Glikson M (eds) Earliest life on Earth: habitats, environments and methods of detection. Springer, Dordrecht, pp 291–311CrossRefGoogle Scholar
  169. McCollom TM, Seewald JS (2007) Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem Rev 107:382–401PubMedCrossRefPubMedCentralGoogle Scholar
  170. Merz MU (1992) The biology of carbonate precipitation by cyanobacteria. Facies 26:81–101CrossRefGoogle Scholar
  171. Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jorgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015PubMedCrossRefPubMedCentralGoogle Scholar
  172. Miller SL (1953) The production of amino acids under possible primitive Earth conditions. Science 117:528–529PubMedCrossRefPubMedCentralGoogle Scholar
  173. Miller AG, Colman B (1980) Evidence for HCO3 transport by the blue-green alga (Cyanobacterium) Coccochloris peniocystis. Plant Physiol 65:397–402PubMedPubMedCentralCrossRefGoogle Scholar
  174. Miller HM, Mayhew LE, Ellison ET, Kelemen P, Kubo M, Templeton AS (2017) Low temperature hydrogen production during experimental hydration of partially-serpentinized dunite. Geochim Cosmochim Acta 209:161–183CrossRefGoogle Scholar
  175. Milroy PG, Wright VP (2002) Fabrics, facies control and diagenesis of lacustrine ooids and associated grains from the Upper Triassic, southwest England. Geol J 37:35–53CrossRefGoogle Scholar
  176. Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM (2012) Zero-valent Sulphur is a key intermediate in marine methane oxidation. Nature 49:541–546CrossRefGoogle Scholar
  177. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148PubMedCrossRefPubMedCentralGoogle Scholar
  178. Miyakawa S, Yamanashi H, Kobayashi K, Cleaves HJ, Miller SL (2002) Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proc Natl Acad Sci USA 99:14628–14631PubMedCrossRefPubMedCentralGoogle Scholar
  179. Moissette P, Cornée J-J, Mannaï-Tayech B, Rabhi M, André J-P, Koskeridou E, Méon H (2010) The western edge of the Mediterranean Pelagian Platform: a Messinian mixed siliciclastic–carbonate ramp in northern Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 285:85–103CrossRefGoogle Scholar
  180. Monty CLV, Westall F, van der Gaast S (1991) Diagenesis of siliceous particles in subantarctic sediments, ODP Leg 114, Hole 699a: possible microbial mediation. In: Ciesielski PF, Kristoffersen Y, Clement B, Moore TC (eds) Proceedings of the ODP scientific research, vol 114. ODP, College Station, pp 685–710Google Scholar
  181. Mörsdorf G, Frunzke K, Gadkari D, Meyer O (1992) Microbial growth on carbon monoxide. Biodegradation 3:61–82CrossRefGoogle Scholar
  182. Noffke N (2009) The criteria for the biogenicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth Sci Rev 96:173–180CrossRefGoogle Scholar
  183. Noffke N (2010) Geobiology: microbial mats in sandy deposits from the Archaean Era to today. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  184. Noffke N, Eriksson KA, Hazen RM, Simpson EL (2006) A new window into Archean life: Microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34:253–256CrossRefGoogle Scholar
  185. Nuevo M, Bredehöft JH, Meierhenrich UJ, d’Hendecourt L, Thiemann WH (2010) Urea, glycolic acid, and glycerol in an organic residue produced by ultraviolet irradiation of interstellar/pre-cometary ice analogs. Astrobiology 10:245–256PubMedCrossRefPubMedCentralGoogle Scholar
  186. Nutman AP, Bennett VC, Friend CRL, Van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538PubMedCrossRefPubMedCentralGoogle Scholar
  187. Obraztsova AY, Francis CA, Tebo BM (2002) Sulfur disproportionation by the facultative anaerobe Pantoea agglomerans SP1 as a mechanism for chromium (VI) reduction. Geomicrobiol J 19:121–132CrossRefGoogle Scholar
  188. Ollivier B, Guyot F (2009) Sulfate-reducing bacteria: a deep biosphere-early life connection ? Environ Microbiol Rep (Crystal Ball 2009) 1:14–16Google Scholar
  189. Onstott TC (2016) Deep life: the hunt for the hidden biology of earth, Mars, and beyond. Princeton University Press, 512 ppGoogle Scholar
  190. Orange F, Westall F, Disnar J-R, Prieur D, Bienvenu N, Le Romance M, Défarge C (2009) Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks. Geobiology 7:403–418PubMedCrossRefPubMedCentralGoogle Scholar
  191. Orange F, Disnar JR, Westall F, Prieur D, Baillif P (2011) Metal binding by the early Earth analogue microorganism, archaea Methanocaldococcus jannaschii and its effects on silicification. Palaeontology 54:953–964CrossRefGoogle Scholar
  192. Orange F, Disnar J-P, Gautret P, Westall F, Bienvenu N, Lottier N, Prieur D (2012) Preservation and evolution of organic matter during experimental fossilisation of the hyperthermophilic archaea Methanocaldococcus jannaschii. Orig Life Evol Biosph 42:587–609PubMedCrossRefPubMedCentralGoogle Scholar
  193. Orberger B, Rouchon V, Westall F, de Vries ST, Wagner C, Pinti DL (2006) Protoliths and micro-environments of some Archean Cherts (Pilbara, Australia). In: Reimold WU, Gibson R (eds.) Processes on the early Earth. Geological Society of America, special paper Boulder 405: 132–154Google Scholar
  194. Parshina SN, Sipma J, Nakashimada Y, Meint Henstra A, Smidt H, Lysenko AM, Lens PNL, Lettinga G, Stams AJM (2005) Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. Int J Syst Evol Microbiol 55:2159–2165PubMedCrossRefPubMedCentralGoogle Scholar
  195. Pasini V, Brunelli D, Dumas P, Sandt C, Frederick J, Benzerara BS, Ménez B (2013) Low temperature hydrothermal oil and associated biological precursors in serpentinites from Mid-Ocean Ridge. Lithos 178:84–95CrossRefGoogle Scholar
  196. Patterson C, Tilton G, Inghram M (1955) Age of the Earth. Science 121:69–75PubMedCrossRefPubMedCentralGoogle Scholar
  197. Pflug HD, Jaeschke-Boyer H (1979) Combined structural and chemical analysis of 3,800-Myr-old microfossils. Nature 280:483–448CrossRefGoogle Scholar
  198. Philippot P, Van Zuiten M, Lepot K, Thomazo C, Farquhar J, Van Kranendonk MJ (2007) Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317:1534–1537PubMedCrossRefPubMedCentralGoogle Scholar
  199. Pikuta EV, Hoover RB, Bej AK, Marsi D, Whitman WB, Cleland D, Krader P (2003) Desulfonatronum thiosdismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol 53:1327–1332CrossRefGoogle Scholar
  200. Pinti DL (2005) In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology, Advances in Astrobiology and Biogeophysics. Springer, Berlin, pp 83–107CrossRefGoogle Scholar
  201. Poser A, Lohmayer R, Vogt C, Knoeller K, Planer-Friedrich B, Sorokin D, Richnow H-H, Finster K (2013) Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles 17:1003–1012PubMedCrossRefPubMedCentralGoogle Scholar
  202. Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784:1873–1898PubMedPubMedCentralCrossRefGoogle Scholar
  203. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104PubMedCrossRefPubMedCentralGoogle Scholar
  204. Reid RP, James NP, Macintyre IG, Dupraz CP, Burne RV (2003) Shark Bay stromatolites: microfabrics and reinterpretation of origins. Facies 49:299–324Google Scholar
  205. Rettberg P, Anesio AM, Baker VR, Baross JA, Cady SL, Detsis E, Foreman CM, Hauber E, Ori GG, Pearce DA, Renno NO, Ruvkun G, Sattler B, Saunders MP, Smith DH, Wagner D, Westall F (2016) Planetary protection and Mars special regions--a suggestion for updating the definition. Astrobiology 16:119–125PubMedCrossRefPubMedCentralGoogle Scholar
  206. Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 21–51CrossRefGoogle Scholar
  207. Riding R (1994) Evolution of algal and cyanobacterial calcification. In: Bengtson S (ed) Early life on Earth. Columbia University Press, New York, pp 426–438Google Scholar
  208. Riding R (2006a) Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sediment Geol 185:229–238CrossRefGoogle Scholar
  209. Riding R (2006b) Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology 4:299–316CrossRefGoogle Scholar
  210. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  211. Robert F, Chaussidon M (2006) A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443:969–972PubMedCrossRefPubMedCentralGoogle Scholar
  212. Rosing MT (1999) 13C-Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west Greenland. Science 283:674–676PubMedCrossRefPubMedCentralGoogle Scholar
  213. Russel MJ, Nitschke W, Branscomb E (2013) The inevitable journey to being. Philos Trans R Soc 368:20120254CrossRefGoogle Scholar
  214. Sagan C, Mullen G (1972) Earth and Mars: evolution of atmospheres and surface temperatures. Science 177:52–56PubMedCrossRefPubMedCentralGoogle Scholar
  215. Saghaï A, Zivanovic Y, Zeyen N, Moreira D, Benzerara K, Deschamps P, Bertolino P, Ragon M, Tavera R, López-Archilla AI, López-García P (2015) Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites. Front Microbiol 6:797. CrossRefPubMedPubMedCentralGoogle Scholar
  216. Saghaï A, Zivanovic Y, Moreira D, Benzerara K, Bertolino P, Ragon M, Tavera R, López-Archilla AI, López- García P (2016) Comparative metagenomics unveils functions and genome features of microbialite-associated communities along a depth gradient. Environ Microbiol 18:4990–5004PubMedPubMedCentralCrossRefGoogle Scholar
  217. Salama W, El Aref MM, Gaupp R (2013) Mineral evolution and processes of ferruginous microbialite accretion – an example from the Middle Eocene stromatolitic and ooidal ironstones of the Bahariya Depression, Western Desert, Egypt. Geobiology 11:15–28PubMedCrossRefPubMedCentralGoogle Scholar
  218. Sanz-Montero ME, RodríGuez-Aranda JP, GarcíA Del Cura MA (2008) Dolomite-silica stromatolites in Miocene lacustrine deposits from the Duero Basin, Spain: the role of organotemplates in the precipitation of dolomite: Dolomite-silica stromatolites in Miocene lacustrine deposits. Sedimentology 55:729–750CrossRefGoogle Scholar
  219. Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res 106:117–134CrossRefGoogle Scholar
  220. Schopf JW (1993) Microfossils of the early Archean apex chert: new evidence of the antiquity of life. Science 260:640–646PubMedCrossRefPubMedCentralGoogle Scholar
  221. Schopf JW (2011) The paleobiological record of photosynthesis. Photosynth Res 107:87–101CrossRefGoogle Scholar
  222. Schopf JW, Packer BM (1987) Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73PubMedCrossRefPubMedCentralGoogle Scholar
  223. Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76PubMedCrossRefPubMedCentralGoogle Scholar
  224. Schopf JW, Kudryavtsev AB, Sugitani K, Walter MR (2010) Precambrian microbe-like pseudofossils: a promising solution to the problem. Precambrian Res 179:191–205CrossRefGoogle Scholar
  225. Seard C, Camoin G, Rouchy J-M, Virgone A (2013) Composition, structure and evolution of a lacustrine carbonate margin dominated by microbialites: Case study from the Green River formation (Eocene; Wyoming, USA). Palaeogeogr Palaeoclimatol Palaeoecol 381–382:128–144CrossRefGoogle Scholar
  226. Semikhatov MA, Gebelein CD, Cloud P, Awramik SM, Benmore WC (1979) Stromatolite morphogenesis – progress and problems. Can J Earth Sci 16:992–1015CrossRefGoogle Scholar
  227. Sessions AL, Doughty DM, Welander PV, Summons RE, Newman DK (2009) The continuing puzzle of the great oxidation event. Curr Biol 19:567–574CrossRefGoogle Scholar
  228. Shen Y, Bulck R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410:77–80PubMedCrossRefPubMedCentralGoogle Scholar
  229. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, de Marsac NT, Rippka R, others (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci 110:1053–1058PubMedCrossRefPubMedCentralGoogle Scholar
  230. Shih PM, Hemp J, Ward LM, Matzke NJ, Fischer WW (2017) Crown group Oxyphotobacteria postdate the rise of oxygen. Geobiology 15:19–29PubMedCrossRefPubMedCentralGoogle Scholar
  231. Shock EL, McCollom TM, Schulte MD (1998) The emergence of metabolism from within hydrothermal systems. In: Wiegel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life. Taylor & Francis, London, pp 59–76Google Scholar
  232. Sleep NH, Zahnle KJ, Kasting JF, Morowitz HJ (1989) Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342:139–142PubMedCrossRefPubMedCentralGoogle Scholar
  233. Sleep NH, Zahnle K, Neuhoff PS (2001) Initiation of clement surface conditions on the early Earth. Proc Natl Acad Sci 98:3666–3672PubMedCrossRefPubMedCentralGoogle Scholar
  234. Slobodkin AI, Reysenbach A-L, Slobodkina GB, Baslerov RV, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA (2012) Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Environ Microbiol 62:2565–2571CrossRefGoogle Scholar
  235. Slobodkin AI, Reysenbach A-L, Slobodkina GB, Kolganova TV, Kostrikina NA, Bonch-Osmolovskaya EA (2013) Dissulfuribacter thermophilus gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating, deeply branching deltaproteobacterium from a deep-sea hydrothermal vent. Int J Syst Environ Microbiol 63:1967–1971CrossRefGoogle Scholar
  236. Slobodkin AI, Slobodkina GB, Panteleeva AN, Chernyh NA, Novikov AA, Bonch-Osmolovskaya EA (2016) Dissulfurimicrobium hydrothermale gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating deltaproteobacterium isolated from a hydrothermal pond. Int J Syst Environ Microbiol 66:1022–1026CrossRefGoogle Scholar
  237. Slobodkina GB, Kolganova TV, Kopitsyn DS, Viryasov MB, Bonch-Osmolovskaya EA, Slobodkin AI (2016) Dissulfurirhabdus thermomarina gen. nov., sp. nov., a thermophilic, autotrophic, sulfite-reducing and disproportionating deltaproteobacterium isolated from a shallow-sea hydrothermal vent. Int J Syst Evol Microbiol 66:2515–2519PubMedCrossRefPubMedCentralGoogle Scholar
  238. Smith JW (2000) Isotopic fractionations accompanying sulfur hydrolysis. Geochem J 34:95–99CrossRefGoogle Scholar
  239. Sorin L, Anton V, Miryam B-M, Roi P, Amos F (2010) Late Pleistocene palaeoclimatic and palaeoenvironmental reconstruction of the Dead Sea area (Israel), based on speleothems and cave stromatolites. Quat Sci Rev 29:1201–1211CrossRefGoogle Scholar
  240. Sorokin DY, Tourova TP, Henstra AM, Stams AJM, Galinski EA, Muyzer G (2008) Sulfidogenesis under extremely haloalkaline conditions by Desulfonatrospira thiodismutans gen. nov., sp., nov., and Desulfonatrospira delicata sp. nov., a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology 154:1444–1453PubMedCrossRefPubMedCentralGoogle Scholar
  241. Sorokin DY, Tourova TP, Dektova EN, Kolganova TV, Galinski EA, Muyzer G (2011) Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiautrophicum sp. nov., Desulfonatronovibrio thiodismutans sp., nov., and Desulfonatronovibrio magnus sp. nov. Extremophiles 15:391–401PubMedPubMedCentralCrossRefGoogle Scholar
  242. Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577PubMedCrossRefPubMedCentralGoogle Scholar
  243. Steel JH (1825) A description of the olitic formation lately discovered in the Country of Sratoga and State of New York. Am J Sci 9:16–19Google Scholar
  244. Stern JC, Sutter B, Freissinet C, Navarro-González R, McKay CP, Archer PD Jr, Buch A, Brunner AE, Coll P, Eigenbrode JL, Fairen AG, Franz HB, Glavin DP, Kashyap S, McAdam AC, Ming DW, Steele A, Szopa C, Wray JJ, Martín-Torres FJ, Zorzano MP, Conrad PG, Mahaffy PR, Science Team MSL (2015) Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars. Proc Natl Acad Sci 112:4245–4250PubMedCrossRefPubMedCentralGoogle Scholar
  245. Stetter KO, Gaag G (1983) Reduction of molecular Sulphur by methanogenic bacteria. Nature 305:309–311CrossRefGoogle Scholar
  246. Stetter KO, Segerer A, Zillig W, Huber G, Fiala G, Huber R, König H (1986) Extremely thermophilic sulfur-metabolizing archaebacterial. Syst Appl Microbiol 7:393–397CrossRefGoogle Scholar
  247. Stüeken EE, Buick R, Schauer AJ (2015) Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet Sci Lett 411:1–10CrossRefGoogle Scholar
  248. Summons RE, Jahnke LL, Hope JM, Logan GAN (1999) Molecular fossils for cyanobacteria recording a geological history of oxygenic photosynthesis. Nature 400:554–557PubMedCrossRefPubMedCentralGoogle Scholar
  249. Tartèse R, Chaussidon M, Gurenko A, Delarue F, Robert F (2017) Warm Archean oceans reconstructed from oxygen isotope composition of early-life remnants. Geochem Perspect Lett 3:55–65CrossRefGoogle Scholar
  250. Thamdrup B, Finster K, Hansen JW, Bak F (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59:101–108PubMedPubMedCentralGoogle Scholar
  251. Thomazo C, Pinti DL, Busigny V, Ader M, Hashizume K, Philippot P (2009) Biological activity and the Earth’s surface evolution: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. C R Palevol 8:665–678CrossRefGoogle Scholar
  252. Thomazo C, Ader M, Philippot P (2011) Extreme 15N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle: Extreme 15N-enrichments in 2.72-Gyr-old sediments. Geobiology 9:107–120PubMedCrossRefPubMedCentralGoogle Scholar
  253. Thompson DL, Stilwell JD, Hall M (2015) Lacustrine carbonate reservoirs from Early Cretaceous rift lakes of Western Gondwana: pre-salt coquinas of Brazil and West Africa. Gondwana Res 28:26–51CrossRefGoogle Scholar
  254. Tice MM (2009) Environmental controls on photosynthetic microbial mat distribution and morphogenesis on a 3.42 Ga clastic-starved platform. Astrobiology 9:989–1000PubMedCrossRefPubMedCentralGoogle Scholar
  255. Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3416-Myr-old ocean. Nature 431:549–552PubMedCrossRefPubMedCentralGoogle Scholar
  256. Timmers PHA, Welte CU, Koehorst JJ, Plugge CM, Jetten MSM, Stams AJM (2017) Reverse methanogenesis and respiration in methanotrophic Archaea. Archaea 1654237, 22 ppGoogle Scholar
  257. Turcotte DL (1980) On the thermal evolution of the Earth. EPSL 48:53–58CrossRefGoogle Scholar
  258. Van den Boorn SHJM, Van Bergen MJ, Nijman W, Strauss H (2007) Dual role of seawater and hydrothermal fluids in Early Archean chert formation: evidence from silicon isotopes. Geology 35:939–942CrossRefGoogle Scholar
  259. Van Kranendonk MJ, Webb GE, Kamber BS (2003) Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology 1:91–108CrossRefGoogle Scholar
  260. Van Kranendonk M, Philippot P, Lepot K, Bodorkos S, Pirajno F (2008) Geological setting of Earth’s oldest fossils in the ca. 3.5Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Res 167:93–124CrossRefGoogle Scholar
  261. Verrecchia EP (1996) Morphometry of microstromatolites in calcrete laminar crusts and a fractal model of their growth. Math Geol 28:87–109CrossRefGoogle Scholar
  262. Verrecchia E, Freytet P, Verrecchia K, Dumont J (1995) Spherulites in calcrete laminar crusts – biogenic CaCO3 precipitation. J Sediment Res Sect A 65:690–700Google Scholar
  263. Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations, processes, and products. Palaeogeor Palaeoclimatol Palaeoecol 219:87–100. CrossRefGoogle Scholar
  264. Wacey D (2009) Early life on earth, a practical guide. In: Landman NH, Harries PJ (eds) Topics in geobiology, vol 31. Springer, HeidelbergGoogle Scholar
  265. Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD (2011) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat Geosci 4:698–702CrossRefGoogle Scholar
  266. Wacey D, Battison L, Garwood RJ, Hickman-Lewis K, Brasier MD (2016a) High-resolution techniques for the study of the morphology and chemistry of Proterozoic microfossils. In: Brasier AT, McIlroy D, McLoughlin N (eds) Earth system evolution and early life: a celebration of the work of Martin Brasier, Geological Society of London Special Publication, vol 448. The Geological Society, London, pp 81–104Google Scholar
  267. Wacey D, Saunders M, Kong C, Brasier AT, Brasier MD (2016b) 3.46 Ga Apex chert ‘microfossils’ reinterpreted as mineral artefacts produced during phyllosilicate exfoliation. Gondwana Res 36:296–313CrossRefGoogle Scholar
  268. Walsh MM, Lowe DR (1999) Modes of accumulation of carbonaceous matter in the early Archaean: a petrographic and geochemical study of the carbonaceous cherts of the Swaziland Supergroup. In: Lowe DR, Byerly GR (eds) Geologic evolution of the Barberton Greenstone Belt, South Africa, Special Paper, vol 329. Geological Society of America, Boulder, pp 115–132Google Scholar
  269. Walter MR, Heys GR (1985) Links between the rise of the Metazoa and the decline of stromatolites. Precambrian Res 29:149–174CrossRefGoogle Scholar
  270. Walter MR, Buick R, Dunlop JSR (1980) Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284:443–445CrossRefGoogle Scholar
  271. Walter MR, Grotzinger JP, Schopf JW (1992) Proterozoic stromatolites. In: Schopf JW, Klein C (eds) The Proterozoic Biosphere, A multidisciplinary study. Cambridge University Press, Cambridge, p 254Google Scholar
  272. Wattinne A, Vennin E, De Wever P (2003) Evolution d’un environnement carbonaté lacustre à stromatolithes, par l’approche paléo-écologique (carrière de Montaigu-le-Blin, bassin des Limagnes, Allier, France). Bull Soc Géol Fr 174:243–260CrossRefGoogle Scholar
  273. Webb GE, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64:1557–1565CrossRefGoogle Scholar
  274. Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116PubMedCrossRefGoogle Scholar
  275. Westall F (1997) The influence of cell wall composition on the fossilization of bacteria and the implications for the search for early life forms. In: Cosmovici C, Bowyer S, Werthimer D (eds) Astronomical and biochemical origins and the search for life in the universe. Editori Compositrici, Bologna, pp 491–504Google Scholar
  276. Westall F (2011) Early life: nature, distribution and evolution. In: Gargaud M, López-Garcìa P, Martin H (eds) Origins and evolution of life – An astrobiological perspective. Astrobiology. Cambridge, pp 391–413Google Scholar
  277. Westall F (2012) The early Earth. In: Impey C, Lunine J, Funes J (eds) Astrobiology. Cambridge University Press, Cambridge, pp 89–114CrossRefGoogle Scholar
  278. Westall F, Cavalazzi B (2011) Biosignatures in rocks. In: Thiel V, Reitner J (eds) Encyclopedia of geobiology. Springer, BerlinGoogle Scholar
  279. Westall F, Folk RL (2003) Exogenous carbonaceous microstructures in Early Archean cherts and BIFs from the Isua Greenstone Belt: implications for the search for life in ancient rocks. Precambrian Res 126:313–333CrossRefGoogle Scholar
  280. Westall F, Boni L, Guerzoni E (1995) The experimental silicification of microorganisms. Paleontology 38:495–528Google Scholar
  281. Westall F, de Wit MJ, Dann J, van der Gaast S, de Ronde CEJ, Gerneke D (2001) Early Archaean fossil bacteria and biofilms in hydrothermally–influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Res 106:93–116CrossRefGoogle Scholar
  282. Westall F, de Vries ST, Nijman W, Rouchon V, Orberger B, Pearson V, Watson J, Verchovsky A, Wright I, Rouzaud J-N, Marchesini D, Severine A (2006a) The 3.466 Ga “Kitty’s Gap Chert,” an early Archean microbial ecosystem. GSA Special Papers 405:105–131Google Scholar
  283. Westall F, de Ronde CEJ, Southam G, Grassineau N, Colas M, Cockell CS, Lammer H (2006b) Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philos Trans R Soc B Biol Sci 361:1857–1875CrossRefGoogle Scholar
  284. Westall F, Cavalazzi B, Lemelle L, Marrocchi Y, Rouzaud JN, Simionovici A, Salome M, Mostefaoui S, Andreazza C, Foucher F, Toporski J, Jauss A, Thiel V, Southam G, MacLean L, Wirick S, Hofmann A, Meibom A, Robert F, Defarge C (2011a) Implications of in situ calcification for photosynthesis in a similar to 3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa. Earth Planet Sci Lett 310:468–479CrossRefGoogle Scholar
  285. Westall F, Foucher F, Cavalazzi B, de Vries S, Nijman W, Pearson V, Watson J, Verchovsky A, Wright I, Rouzaud J-N, Marchesini D, Anne S (2011b) Volcaniclastic habitats for early life on Earth and Mars: a case study from ~3.5 Ga-old rocks from the Pilbara, Australia. Planet Space Sci 59:1093–1106CrossRefGoogle Scholar
  286. Westall F, Campbell KA, Breheret JG, Foucher F, Gautret P, Hubert A, Sorieul S, Grassineau N, Guido DM (2015a) Archean (3.33 Ga) microbe-sediment systems were diverse and flourished in a hydrothermal context. Geology 43:615–618CrossRefGoogle Scholar
  287. Westall F, Foucher F, Bost N, Bertrand M, Loizeau D, Vago JL, Kminek G, Gaboyer F, Campbell KA, Bréhéret JG, Gautret P, Cockell CS (2015b) Biosignatures on Mars : what, where, and how? Implications for the search for martian life. Astrobiology 15:998–1029PubMedPubMedCentralCrossRefGoogle Scholar
  288. Westall F, Hickman-Lewis K, Hinman N, Gautret P, Campbell KA, Bréhéret JG, Foucher F, Hubert A, Sorieul S, Dass AV, Kee TP, Georgelin T, Brack A (2018) A hydrothermal-sedimentary context for the origin of life. Astrobiology 18:259–293PubMedPubMedCentralCrossRefGoogle Scholar
  289. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178PubMedCrossRefPubMedCentralGoogle Scholar
  290. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedPubMedCentralGoogle Scholar
  291. Wright VP, Barnett AJ (2015) An abiotic model for the development of textures in some South Atlantic early Cretaceous lacustrine carbonates. Geol Soc Lond Spec Publ 418:SP418.3CrossRefGoogle Scholar
  292. Zamarreño I, Anadón P, Utrilla R (1997) Sedimentology and isotopic composition of Upper Palaeocene to Eocene non-marine stromatolites, eastern Ebro Basin, NE Spain. Sedimentology 44:159–176CrossRefGoogle Scholar
  293. Zavala C, Ponce JJ, Arcuri M, Drittanti D, Freije H, Asensio M (2006) Ancient lacustrine hyperpycnites: a depositional model from a case study in the Rayoso Formation (Cretaceous) of West-Central Argentina. J Sediment Res 76:41–59CrossRefGoogle Scholar
  294. Zhang Y (2002) The age and accretion of the Earth. Earth Sci Rev 59:235–263CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Bernard Ollivier
    • 1
    Email author
  • Nina Zeyen
    • 2
    • 3
  • Gregoire Gales
    • 1
  • Keyron Hickman-Lewis
    • 4
  • Frédéric Gaboyer
    • 4
  • Karim Benzerara
    • 2
    • 3
  • Frances Westall
    • 4
  1. 1.Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110MarseilleFrance
  2. 2.Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de CosmochimieSorbonne UniversitésParisFrance
  3. 3.UM9R 750, Muséum National d’Histoire NaturelleUniversité Pierre et Marie CurieParisFrance
  4. 4.CNRS, Centre de Biophysique MoléculaireUPR 4301, Rue Charles SadronOrléans CEDEXFrance

Personalised recommendations