Advertisement

Prokaryote/Eukaryote Dichotomy and Bacteria/Archaea/Eukarya Domains: Two Inseparable Concepts

  • Jean-Claude BertrandEmail author
  • Pierre Caumette
  • Philippe Normand
  • Bernard Ollivier
  • Télesphore Sime-Ngando
Chapter

Abstract

The various schemes proposed to classify microorganisms in the living world have long been subject of heated debates. The classical dichotomic distinction between Prokaryotae (cells without nucleus) and Eukaryotae (cells with nucleus) functional and phenotypic categories was deeply changed by rRNA gene-based analysis that divided the living world into three phylogenetic domains: the Bacteria, the Archaea (originally Archaebacteria), and the Eukarya. In this chapter, we review the terms of this debate between the prokaryotic/eukaryotic functional and phenotypic dichotomy and the 16S/18S phylogenetic dichotomy that separates prokaryotes into two distinct domains. The specific characteristics that emphasize the organizational and functional complexity of prokaryotes and justify maintaining this terminology are discussed. We conclude that the organizational and functional concept of a prokaryotes/eukaryotes dichotomy can be easily supplemented by the phylogenetic concept Bacteria/Archaea/Eukarya. The two concepts are not irreconcilable but complementary, resulting in a consensual proposal that integrates both phenotypic and genotypic criteria.

Keywords

Anammoxosome Bacteria/Archaea/Eukarya domains Horizontal gene transfers Multicellularity and differentiation Organelles in prokaryotes Planctomycetes Prokaryote/eukaryote dichotomy Prokaryotic cytoskeleton Prokaryotic membranes Transcription-translation coupling 

References

  1. Abreu F, Silva K, Martins J, Lins U (2006) Cell viability in magnetotactic multicellular prokaryotes. Int Microbiol 9:267–272PubMedGoogle Scholar
  2. Bapteste E, O’Malley M, Beiko R, Ereshefsky M, Gogarten J, Franklin-Hall L, Lapointe F, Dupré J, Dagan T, Boucher Y et al (2009) Prokaryotic evolution and the tree of life are two different things. Biol Direct 4:34CrossRefGoogle Scholar
  3. Bertrand J-C, Brochier-Armanet C, Gouy M, Westall F (2015) For three billion years, microorganisms were the only inhabitants of the earth. In: Bertrand J, Caumette P, Lebaron P, Matheron R, Normand P, Sime-Ngando T (eds) Environmental microbiology: fundamentals and aplications. Springer, Dordrecht/Heidelberg/New York/London, pp 75–106Google Scholar
  4. Best D, Higgins I (1981) Methane-oxidizing activity and membrane morphology in a methanol- grown obligate methanotroph, Methylosinus trichosporium OB3b. J Gen Microbiol 125:73–84Google Scholar
  5. Brochier-Armanet C, Moreira D (2015) Horizontal gene transfer in microbial ecosystems. In: Bertrand J, Caumette P, Lebaron P, Matheron R, Normand P, Sime-Ngando T (eds) Environmental microbiology: fundamentals and applications. Springer, Dordrecht/Heidelberg/New York/London, pp 471–512Google Scholar
  6. Cabeen M, Jacobs-Wagner C (2010) The bacterial cytoskeleton. Annu Rev Genet 44:365–392CrossRefGoogle Scholar
  7. Chatton E (1925) Pansporella perplexa. Réflexions sur la biologie et la phylogénie des protozoaires. Annales des Sciences Naturelles Zoologie et Biologie Animale 10-VII: 1–84Google Scholar
  8. Cho H (2015) The role of cytoskeletal elements in shaping bacterial cells. J Microbiol Biotechnol 25:307–316CrossRefGoogle Scholar
  9. Chowdhury C, Chun S, Pang A, Sawaya M, Sinha S, Yeates T, Bobik T (2015) Selective molecular transport through the protein shell of a bacterial microcompartment organelle. Proc Natl Acad Sci U S A 112:2990–2995CrossRefGoogle Scholar
  10. Claessen D, Rozen D, Kuipers O, Søgaard-Anderson L, van Wezel G (2014) Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nature Rev Microbiol 12:115–124CrossRefGoogle Scholar
  11. Courties C, Vaquer A, Troussellier M, Lautier J, Chrétiennot-Dinet M, Neveux J, Machado C, Claustre H (1994) Smallest eukaryotic organism. Nature 370:255CrossRefGoogle Scholar
  12. De Boer W, Hazeu W (1972) Observations on the fine structure of a methane-oxidizing bacterium. Antonie Van Leeuwenhoek 38:33–47CrossRefGoogle Scholar
  13. De Duve C (2007) The origin of eukaryotes: a reappraisal. Nature Rev 8:395–403CrossRefGoogle Scholar
  14. Derelle E, Ferraz C, Rombauts S, Rouzé P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynié S, Cooke R et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A 103:11647–11652CrossRefGoogle Scholar
  15. DeRosa M, Gambacorta A, Huber R, Lanzotti V, Nicolaus B, Stetter K, Trincone A (1988) A new 15,16-diméthyl-30-glyceryloxy-triacontanoic acid from lipids of Thermotoga maritima. J Soc Chem Commun 1988:1300–1301CrossRefGoogle Scholar
  16. Devos D (2014a) PVC bacteria: variation of, but not exception to, the gram-negative cell plan. Trends Microbiol 22:14–20CrossRefGoogle Scholar
  17. Devos D (2014b) Re-interpretation of the evidence for PVC cell plan supports a gram-negative origin. Antonie Van Leeuwenhoek 105:271–274CrossRefGoogle Scholar
  18. Dolan M, Margulis L (2007) Advances in biology reveal truth about prokaryotes. Nature 445:21CrossRefGoogle Scholar
  19. Duggin I, Aylett C, Walsh J, Michie K, Wang Q, Turnbull L, Dawson E, Harry E, Whitchurch C, Amos L et al (2015) CetZ tubulin-like proteins control archaeal cell shape. Nature 519:362–365CrossRefGoogle Scholar
  20. Embley T, Williams T (2015) Steps on the road to eukaryotes. Nature 521:169–170CrossRefGoogle Scholar
  21. Fuerst J, Sagulenko E (2011) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nature Rev Microbiol 9:403–413CrossRefGoogle Scholar
  22. Ghai R, Mizuno CM, Picazo A, Camacho A, Rodriguez-Valera F (2013) Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Sci Rep 3:2471CrossRefGoogle Scholar
  23. Gottshall E, Seebart C, Gatlin J, Ward N (2014) Spatially segregated transcription and translation in cells of the endomembrane-containing bacterium Gemmata obscuriglobus. Proc Natl Acad Sci U S A 111:11067–11072CrossRefGoogle Scholar
  24. Graumann P (2007) Cytoskeletal elements in bacteria. Annu Rev Microbiol 61:589–618CrossRefGoogle Scholar
  25. Grossi V, Mollex D, Vinçon-Laugier A, Hakil F, Pacton M, Cravo-Laureau C (2015) Mono- and dialkyl glycerol ether lipids in anaerobic bacteria: biosynthetic insights from the mesophilic sulfate reducer Desulfatibacillum alkenivorans PF2803T. Appl Environ Microbiol 81:3157–3168CrossRefGoogle Scholar
  26. Hanson R, Hanson T (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471PubMedPubMedCentralGoogle Scholar
  27. Ingerson-Mahar M, Gitai Z (2012) A growing family: the expanding universe of the bacterial cytoskeleton. FEMS Microbiol Rev 36:256–266CrossRefGoogle Scholar
  28. Jeske O, Schüler M, Schumann P, Schneider A, Boedeker C, Jogler M, Bollschweiler D, Rohde M, Mayer C, Engelhardt H et al (2015) Planctomycetes do possess a peptidoglycan cell wall. Nat Commun 6:7116CrossRefGoogle Scholar
  29. Kerfeld C, Heinhorst S, Cannon G (2010) Bacterial microcomparments. Ann Rev Microbiol 64:391–408CrossRefGoogle Scholar
  30. Lewis P, Thaker S, Errington J (2000) Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J 19:710–718CrossRefGoogle Scholar
  31. Liberton M, Berg R, Heuser J, Roth R, Himadri B, Pakrasi H (2006) Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma 227:129–138CrossRefGoogle Scholar
  32. Lin L, Thanbichler M (2013) Nucleotide-independent cytoskeletal scaffolds in Bacteria. Cytoskeleton 70:409–423CrossRefGoogle Scholar
  33. Lonhienne T, Sagulenko E, Webb R, Lee K-C, Franke J, Devos D, Nouwens A, Caroll B, Fuerst J (2010) Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci U S A 107:12883–12888CrossRefGoogle Scholar
  34. Lundgren M, Andersson A, Chen L, Nilsson P, Bernander R (2004) Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. Proc Natl Acad Sci U S A 101:7046–7051CrossRefGoogle Scholar
  35. Lyons N, Kolter R (2015) On the evolution of multicellularity. Curr Opinion Microbiol 24:21–28CrossRefGoogle Scholar
  36. Madigan M, Bender K, Buckley D, Sattley W, Stahl D (2015) Brock biology of microorganisms. Pearson, New YorkGoogle Scholar
  37. Mahat R, Seebart C, Basile F, Ward N (2016) Global and targeted lipid analysis of Gemmata obscuriglobus reveals the presence of lipopolysaccharide, a signature of the classical gram- negative outer membrane. J Bacteriol 198:221–236CrossRefGoogle Scholar
  38. Margolin W (2005) FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6: 862–871CrossRefGoogle Scholar
  39. Martin W, Koonin E (2006) A positive definition of prokaryotes. Nature 442:868CrossRefGoogle Scholar
  40. Massana R, Logares R (2013) Eukaryotic versus prokaryotic marine picoplankton ecology. Environ Microbiol 15:1254–1261CrossRefGoogle Scholar
  41. Mayr E (1998) Two empires or three ? Proc Natl Acad Sci U S A 95:9720–9723CrossRefGoogle Scholar
  42. Murat D, Byrne M, Komeili A (2010) Cell biology of prokaryotic organelles. Cold Spring Harb Perspect Biol 2:a000422CrossRefGoogle Scholar
  43. Nevo R, Charuvi D, Shimoni E, Schwarz R, Kaplan A, Ohad I, Reich Z (2007) Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J 26:1467–1473CrossRefGoogle Scholar
  44. Nevo-Dinur K, Nussbaum-Shochat A, Ben-Yehuda S, Amster-Choder O (2011) Translation-independent localization of mRNA in E. coli. Science 331:1081–1084CrossRefGoogle Scholar
  45. Oren A, Garrity G (2014) Then and now: a systematic review of the systematics of prokaryotes in the last 80 years. Antonie Van Leeuwenhoek 106:43–56CrossRefGoogle Scholar
  46. Orlandini V, Emiliani G, Fondi M, Maida I, Perrin E, Fani R (2014) Network analysis of plasmidomes: The Azospirillum brasilense Sp245 case. Int J Evol Biol:951035Google Scholar
  47. Ozyamak E, Kollman J, Komeili A (2013) Bacterial actins and their diversity. Biochemistry 52:6928–6939CrossRefGoogle Scholar
  48. Pace N (2006) Time for change. Nature 44:289CrossRefGoogle Scholar
  49. Pace N (2009a) Problems with “Procaryote”. J Bacteriol 191:2008–2010CrossRefGoogle Scholar
  50. Pace N (2009b) Rebuttal: the modern concept of the prokaryote. J Bacteriol 191:2006–2007CrossRefGoogle Scholar
  51. Pereira S, Reeve J (1998) Histones and nucleosomes in archaea and eukarya: a comparative analysis. Extremophiles 2:141–148CrossRefGoogle Scholar
  52. Petersen MØ, Linnanto J, Frigard N-U, Nielsen N, Miller M (2010) A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic bacteria. Photosynth Res 104:233–243CrossRefGoogle Scholar
  53. Rappe MS, Connon S, Vergin K, Giovannoni S (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633CrossRefGoogle Scholar
  54. Rosenberg E (2014) The prokaryotes; Alphaproteobacteria and Betaproteobacteria. Springer, BerlinGoogle Scholar
  55. Sagulenko E, Morgan G, Webb R, Yee B, Lee K-C, Fuerst J (2014) Structural studies of Planctomycete Gemmata obscuriglobus support cell compartmentalisation in a bacterium. PLoS One 9:3CrossRefGoogle Scholar
  56. Saier M, Bogdanov M (2013) Membranous organelles in bacteria. J Mol Microbiol Biotechnol 23:5–12CrossRefGoogle Scholar
  57. Samson R, Obita T, Freund S, Williams R, Bell S (2008) A role for the ESCRT system in cell division in archaea. Science 322:1710–1713CrossRefGoogle Scholar
  58. Santarella-Mellwig R, Pruggnaller S, Roos N, Mattaj I, Devos D (2013) Three-dimensional reconstruction of bacteria with a complex endomembrane system. PLoS Biol 11:e1001565CrossRefGoogle Scholar
  59. Sapp J (2006) Two faces of the prokaryote concept. Int Microbiol 9:163–172PubMedGoogle Scholar
  60. Sinninghe DJ, Rijpstra W, Hopmans E, Shouten S, Balk M, Stams AJ (2007) Structural characterization of diabolic acid-based tetraester, tetraether and mixed ether/ester, membrane-spanning lipids of bacteria from the order Thermotogales. Arch Microbiol 188:629–641CrossRefGoogle Scholar
  61. Sinninghe DJ, Rijpstra W, Hopmans E, Foesel B, Wüst P, Overmann J, Tank M, Bryant D, Dunfield P, Houghton K et al (2014) Ether- and ester-bound iso-diabolic acid and other lipids in members of Acidobacteria subdivision 4. Appl Environ Microbiol 80:5207–5218CrossRefGoogle Scholar
  62. Soppa J (2014) Evolutionary advantages of polyploidy in halophilic archaea. Biochem Soc Trans 41:339–343CrossRefGoogle Scholar
  63. Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJ (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179CrossRefGoogle Scholar
  64. Stanier R, van Niel C (1962) The concept of a bacterium. Arch Mikrobiol 42:17–35Google Scholar
  65. Tindall B, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266CrossRefGoogle Scholar
  66. Trachtenberg S, Dorward L, Speransky V, Jaffe H, Andrews S, Leapman R (2008) Structure of the cytoskeleton of Spiroplasma melliferum BC3 and its interactions with the cell membrane. J Mol Biol 378:778–789CrossRefGoogle Scholar
  67. van der Giezen M (2009) Hydrogenosomes and mitosomes: conservation and evolution of functions. J Eukaryot Microbiol 56: 221–231Google Scholar
  68. van Gestel J, Vlamakis H, Kolter R (2015) From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. PLoS Biol 13:e1002141CrossRefGoogle Scholar
  69. van Gool A (1972) Ultrastructure of Nitrosomonas europaea cells as revealed by freeze-etching. Archiv Mikrobiol 82:120–127CrossRefGoogle Scholar
  70. van Niftrik L, Jetten M (2012) Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol Mol Biol Rev 76: 585–596CrossRefGoogle Scholar
  71. van Teeseling MC, de Almeida NM, Klingl A, Speth D, Op den Camp H, Rachel R, Jetten M, van Niftrik L (2013) A new addition to the cell plan of anammox bacteria: “Candidatus Kuenenia stuttgartiensis” has a protein surface layer as the outermost layer of the cell. J Bacteriol 196:80–89CrossRefGoogle Scholar
  72. Vaulot D, Eikrem W, Viprey M, Moreau H (2008) The diversity of small eukaryotic phytoplankton (< or =3 microm) in marine ecosystems. FEMS Microbiol Rev 32:795–820CrossRefGoogle Scholar
  73. Whitman W (2009) The modern concept of the prokaryote. J Bacteriol 191:2000–2020CrossRefGoogle Scholar
  74. Woese C (1994) There must be a prokaryote somewhere: microbiology’s search for itself. Microbiol Rev 58:1–9PubMedPubMedCentralGoogle Scholar
  75. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090CrossRefGoogle Scholar
  76. Zhang R, Chen Y-R, Du H-J, Zhang W-Y, Pan H-M, Xiao T, Wu L-F (2014) Characterization and phylogenetic identification of a species of spherical multicellular magnetotactic prokaryotes that produces both magnetite and greigite crystals. Res Microbiol 165:481–489CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jean-Claude Bertrand
    • 1
    Email author
  • Pierre Caumette
    • 2
  • Philippe Normand
    • 3
  • Bernard Ollivier
    • 4
  • Télesphore Sime-Ngando
    • 5
  1. 1.Unité Mixte de Service, UMS 3470, OSU PythéasAix Marseille UniversitéMarseille CedexFrance
  2. 2.Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, UMR 5254, CNRSUniversité de Pau et des Pays de l’AdourPauFrance
  3. 3.Laboratoire d’Ecologie Microbienne, UMR 5557Université Claude Bernard Lyon 1VilleurbanneFrance
  4. 4.Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110MarseilleFrance
  5. 5.Laboratoire “Microorganismes: Génome et Environnement” (LMGE), CNRS UMR 6023Université Clermont AuvergneClermont-FerrandFrance

Personalised recommendations