Advertisement

Nature-Inspired Algorithms for Global Optimization in Group Robotics Problems

  • Anatoliy P. Karpenko
  • Ilia A. Leshchev
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 174)

Abstract

Localization of plots of land which have the highest level of radiation, chemical or alternative contamination is one of the typical group robotics objectives. The research aim lies in development, software implementation and performance study of the original robotic group control algorithm based on nature-inspired Cat Swarm Optimization algorithm. This paper proposes Cat Swarm Optimization algorithm description, features of software realization and a vast computational experiment results. The practical value of this work lies in applicability of proposed algorithm for decentralized robotic group control systems synthesis.

Keywords

Robot Group robotics SEMS Decentralized robotic group control Nature-inspired algorithms of global optimization Contaminated plots of land localization 

References

  1. 1.
    Pettersson, L.M., Durand, D., Johannessen, O.M., Pozdnyakov, D.: Monitoring of Harmful Algal Blooms. Praxis Publishing, London (2012)Google Scholar
  2. 2.
    White, B.A., Tsourdos, A., Ashokoraj, I., Subchan, S., Zbikowski, R.: Contaminant cloud boundary monitoring using UAV sensor swarms. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, pp. 1037–1043, San Francisco, USA (2005)Google Scholar
  3. 3.
    Hayes, A.T., Martinoli, A., Goodman, R.M.: Distributed odor source localization. IEEE Sens. J. 2(3), 260–271 (2002)CrossRefGoogle Scholar
  4. 4.
    Lilienthal, A., Duckett, T.: Creating gas concentration grid maps with a mobile robot. In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 118–123, Las Vegas, USA (2003)Google Scholar
  5. 5.
    Xing, B., Gao, W.-J.: Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms, 451 p. Springer International Publishing Switzerland (2014)Google Scholar
  6. 6.
    Sharkey, A.J.C.: Swarm robotics and minimalism. Connection Sci. 19(3), 245–260 (2007)CrossRefGoogle Scholar
  7. 7.
    Swarmanoid: Towards Humanoid Robotic Swarms. http://www.swarmanoid.org/publications_byyear.php
  8. 8.
    Vaishak, N.L., Shilpa, B.: A review of swarm robotics: a different approach to service robot. Int. J. Sci. Eng. Technol. Res. (IJSETR) 2(8), 1560–1565 (2013)Google Scholar
  9. 9.
    Chu, S.C., Tsai, P.W., Pan, J.S.: Cat Swarm Optimization, LNAI 4099, 3(1), 854–858 (Berlin, Heidelberg: Springer-Verlag)Google Scholar
  10. 10.
    Orouskhani, M., Mansouri, M., Teshnehlab, M.: Average-Inertia weighted Cat Swarm Optimization. LNCS, pp. 321–328. Springer, HeidelbergGoogle Scholar
  11. 11.
    Orouskhani, Meysam, Orouskhani, Yasin, Mansouri, Mohammad, Teshnehlab, Mohammad: A novel cat swarm optimization algorithm for unconstrained optimization problems. I.J. Inf. Technol. Comput. Sci. 11, 32–41 (2013)Google Scholar
  12. 12.
    Crawford, B., Soto, R., Berríos, N., Johnson, F., Paredes, F., Castro, C., Norero, E.: A binary cat swarm optimization algorithm for the non-unicost set covering problem. Math. Probl. Eng. 2015, 8 (2015)Google Scholar
  13. 13.
    Kanwar, N., Gupta, N., Swarnkar, A., Gupta, N.: Improved cat swarm optimization for simultaneous allocation of DSTATCOM and DGs in distribution systems. J. Renew. Energy 2015, 10 (2015)Google Scholar
  14. 14.
    Nie, X., Wang, W., Nie, H.: Chaos quantum-behaved cat swarm optimization algorithm and its application in the PV MPPT. Comput. Intell. Neurosci. 2017, 11 (2017)Google Scholar
  15. 15.
    Tsai, P.-T., Pan, J.-S., Chen, S.-M., Liao, B.-Y., Hao, S.-P.: Parallel cat swarm optimization. In: Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming, vol. 6, pp. 3328–3333, 12–15 July 2008Google Scholar
  16. 16.
    Saha, S.K., Ghoshal, S.P., Kar, R., Mandal, D.: Cat swarm optimization algorithm for optimal linear phase FIR filter design. ISA Trans. 52(6), 781–794 (2013)CrossRefGoogle Scholar
  17. 17.
    Kotekar, S., Kamath, S.S.: Enhancing service discovery using cat swarm optimization based web service clustering. Perspect Sci 8, 715–717 (2016)CrossRefGoogle Scholar
  18. 18.
    Khalaf, A.H., El-Bakry, H.M., Sabbeh, S.F.: University courses scheduling using cat swarm optimization algorithm. Int. J. Adv. Res. Comput. Sci. Technol. (IJARCST 2016) 4(1), 2347–8446 (2016)Google Scholar
  19. 19.
    Orouskhani, M., Teshnehlab, M., Nekoui, M.A.: Integration of cat swarm optimization and Borda ranking method for solving dynamic multi-objective problems. Int. J. Comput. Intell. Appl. 15(03), 18 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations