Advertisement

A Coordinated Stable-Effective Compromises Based Methodology of Design and Control in Multi-object Systems

  • Evgeny M. Voronov
  • Vladimir A. Serov
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 174)

Abstract

In article the game hierarchical approach based optimization methodology of smart electromechanical systems group control with the principle of the coordinated stable-effective compromises application is developed. The problem of optimization of group control is decomposed into classes of problems of local, distributed and hierarchical control, taking into account structural and functional inconsistency, conflict, multicriteria, and uncertainty. Such structuring allows to consider different conditions of conflict group interaction of subsystems. The principle of coordinated stable-effective compromises, generalizing the Stackelberg hierarchical equilibrium principle, is formulated. The guaranteeing properties of stable-effective control laws are investigated.

Keywords

Group control Smart electromechanical system (SEM) Conflict Uncertainty Multi-object multi-criteria system (MMS) Hierarchical system Coordinated stable-effective compromise (COSTEC) Structural adaptation 

References

  1. 1.
    Kalyaev, I.A., Gaiduk, A.R., Kapustyan, S.G: Models and Algorithms of Collective Control in Groups of Robots, 280 p. Fizmatlit (2009)Google Scholar
  2. 2.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. In: IEEE Transaction on Automatic Control, May 2003Google Scholar
  3. 3.
    Dahl, T.S., Mataric, M.J., Sukhatme, G.S.: Emergent robot differentiation in distributed multi-robot task allocation. In: Proceedings of the 7th International Symposium on Distributed Autonomous Robotic Systems (DARS-04), Toulouse, France (2004)Google Scholar
  4. 4.
    Bruce, J., Bowling, M., Browning, B., Veloso, M.: Multi-robot team response to a multi-robot opponent team. In: Proceedings of ICRA ’03, the 2003 IEEE International Conferenceon Robotics and Automation, Taiwan, May 2003Google Scholar
  5. 5.
    Voronov, E.M.: In: Egupov, D. (ed.) Methods of Optimization of Control of Multi-object Multi-criteria Systems on the Basis of Stable-Effective Game Solutions, 576 p. BMSU, Moscow (2001)Google Scholar
  6. 6.
    Vorobyiov, N.N.: Fundamentals of the Theory of Games. Noncooperative Games, 496 p. Science, Moscow (1984)Google Scholar
  7. 7.
    Vilkas, E.T.: Optimality in Games and Solutions, 256 p. Science, Moscow (1990)Google Scholar
  8. 8.
    Zhukovsky, V.I., Chikry, A.A.: Linear-Quadratic Differential Games, 320 p. Naukova Dumka, Kyiv (1994)Google Scholar
  9. 9.
    Zhukovsky, V.I., Zhukovskaya, L.V.: In: Molostvov, V.S. (ed.) Risk in Multi-criteria and Conflict Systems Under Uncertainty, 272 p. Editorial URSS, Moscow (2004)Google Scholar
  10. 10.
    Harsanyi, G., Reinhard, Z.: General Theory of Equilibrium Choice in Games, 424 p. SPb (2001)Google Scholar
  11. 11.
    Smolyakov, E.R.: Theory of Conflict Equilibria, 304 p. Editorial URSS, Moscow (2005)Google Scholar
  12. 12.
    Gorelov, M.A., Kononenko, A.F.: Dynamic models of conflict. II. Equilibrium. Autom. Telemechanics (12), 56–77 (2014)Google Scholar
  13. 13.
    Gorelov, M.A., Kononenko, A.F.: Dynamic models of conflict. III. Hierarchical games. Autom. Telemechanics (2), 89–106 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gorelik, V.A., Rodyukov, A.V., Tarakanov, A.F.: Hierarchical game under uncertainty using risk players and guaranteed assessment strategies. Izv. RAS Theory Control Syst. (6), 94–101 (2009)Google Scholar
  15. 15.
    Govorov, A.N., Tarakanov, A.F.: Coalition-hierarchical game under uncertainty. Izv. RAS Theory Control Syst. (3), 75–80 (2008)Google Scholar
  16. 16.
    Moya, S.: The calculation of the Stackelberg–Nash equilibrium as a fixed point problem in static hierarchical games. Int. J. Dyn. Control 1–12 (2017)Google Scholar
  17. 17.
    Léon, E., Pape, A., Costes, M., Désidéri, J., Alfano, D.: Concurrent aerodynamic optimization of rotor blades using a Nash game method. J. Am. Helicopter Soc. 61(2), 1–13 (2016)CrossRefGoogle Scholar
  18. 18.
    Leskinen, J., Périaux, J.: Distributed evolutionary optimization using Nash games and GPUs-applications to CFD design problems. Comput Fluids 80, 190–201 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Periaux, J., Greiner, D.: Efficient parallel Nash genetic algorithm for solving inverse problems in structural engineering. In: Mathematical Modeling and Optimization of Complex Structures. Computational Methods in Applied Sciences, vol. 40, pp. 205–228. Springer, New York (2016)Google Scholar
  20. 20.
    Ungureanu, V.: Pareto-Nash-Stackelberg Game and Control Theory: Intelligent Paradigms and Applications (Smart Innovation, Systems and Technologies), 579 p. Springer (2017). ISBN 10 3319751506, ISBN 13 978-3319751504Google Scholar
  21. 21.
    Serov, V.A.: Stable-equilibria control in a hierarchical game model of a structurally complex system under uncertainty. In: Popkov, Y.S. (ed.) Proceedings of the Institute for System Analysis RAS. Dynamics of Heterogeneous Systems, vol. 10(1), pp. 64–76. Komkniga, Moscow (2006)Google Scholar
  22. 22.
    Vanin, A.V., Voronov, E.M., Serov, V.A., Karpunin, A.A., Liubavskii, K.K.: Optimization of hierarchical systems “guidance-stabilization” of the aircraft with the adaptation of the stabilization system. Vestnik BMSTU Ser. Instrum. Making (4), 13–33 (2015)Google Scholar
  23. 23.
    Voronov, E.M., Karpunin, A.A., Serov, V.A.: The hierarchical equilibrium in multilevel control systems. Vestnik RUDN. Ser. Eng. Res. (4), 18–29 (2008)Google Scholar
  24. 24.
    Voronov, E.M., Karpunin, A.A., Serov, V.A.: Hierarchical equilibrium in two-level aircraft guidance-stabilization systems. In: Aerospace Guidance, Navigation and Flight Control Systems (AGNFCS’09): Proceedings of the IFAC Workshop, June 30–July 2, 2009, Samara, Russia. The International Physics and Control Society (IPACS) Electronic Library. http://lib.physcon.ru/?item=21. 6 p
  25. 25.
    Serov, V.A., Voronov, E.M.: Evolutionary algorithms for finding of a stable-effective compromises in multi-object control problems (in this collection)Google Scholar
  26. 26.
    Mesarovich, M., Mako, D., Takahara, I.: Theory of Hierarchical Multilevel Systems, 344 p. World, Moscow (1973)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussia
  2. 2.Russian Technological University (MIREA)MoscowRussia

Personalised recommendations