Advertisement

ARPiano Efficient Music Learning Using Augmented Reality

  • Fernando TrujanoEmail author
  • Mina Khan
  • Pattie Maes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11003)

Abstract

ARPiano uses a MIDI keyboard and a multifunction knob to create a novel mixed reality experience that supports visual music learning, music visualizations and music understanding. At its core, ARPiano provides a framework for extending a physical piano using augmented reality. ARPiano is able to precisely locate a physical keyboard in order to overlay various objects around the keyboard and on individual keys. These augmented objects are then used for music learning, visualization and understanding. Furthermore, ARPiano demonstrates a novel way to utilize the keys in a piano as an interface to interact with various augmented objects.

Keywords

Augmented reality Piano Learning Education Music 

Notes

Acknowledgments

Redacted to maintain submission anonimity.

References

  1. 1.
    Campbell, P.S., Scott-Kassner, C., Kassner, K.: Music in childhood: from preschool through the elementary grades. Schirmer Cengage Learning, Boston (2014)Google Scholar
  2. 2.
    Gault, B.: Music learning through all the channels: combining aural, visual, and kinesthetic strategies to develop musical understanding. Gen. Music Today 19(1), 7–9 (2005).  https://doi.org/10.1177/10483713050190010103CrossRefGoogle Scholar
  3. 3.
    Morris, C.: Making sense of education: sensory ethnography and visual impairment. Ethnography Educ. 12(1), 1–16 (2016).  https://doi.org/10.1080/17457823.2015.1130639CrossRefGoogle Scholar
  4. 4.
    Harmonic Coloring: A method for indicating pitch class (n.d.). http://www.musanim.com/mam/circle.html. Accessed 11 Dec 2017
  5. 5.
    Music Learning Software for Educators & Students (n.d.). https://www.smartmusic.com/. Accessed 11 Dec 2017
  6. 6.
    Synthesia, Piano for Everyone (n.d.). https://www.synthesiagame.com/. Accessed 11 Dec 2017
  7. 7.
    Xiao, X.: Andante: a walking tempo (n.d.). http://portfolio.xiaosquared.com/Andante. Accessed 11 Dec 2017
  8. 8.
    Xiao, X.: Perpetual Canon (n.d.). http://portfolio.xiaosquared.com/Perpetual-Canon. Accessed 11 Dec 2017
  9. 9.
    Takahashi, K.: MidiJack, 5 November 2016. https://github.com/keijiro/MidiJack. Accessed 11 Dec 2017
  10. 10.
    Tone.js (n.d.). https://tonejs.github.io/. Accessed 11 Dec 2017
  11. 11.
    Color Music Theory (n.d.). https://www.facebook.com/Virtuosoism/. Accessed 11 Dec 2017
  12. 12.
    How does Muse work? (n.d.). http://www.choosemuse.com/how-does-muse-work/. Accessed 11 Dec 2017
  13. 13.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981)CrossRefGoogle Scholar
  14. 14.
    May, P., Ehrlich, H.C., Steinke, T.: ZIB structure prediction pipeline: composing a complex biological workflow through web services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1148–1158. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)Google Scholar
  16. 16.
    Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services for distributed resource sharing. In: 10th IEEE International Symposium on High Performance Distributed Computing, pp. 181–184. IEEE Press, New York (2001)Google Scholar
  17. 17.
    Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: an open grid services architecture for distributed systems integration. Technical report, Global Grid Forum (2002)Google Scholar
  18. 18.
    National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Massachusetts Institute of Technology, Media LaboratoryCambridgeUSA

Personalised recommendations