Adult T-Cell Leukemia-Lymphoma

  • Wataru Munakata
  • Kensei Tobinai
Part of the Cancer Treatment and Research book series (CTAR, volume 176)


Adult T-cell leukemia-lymphoma (ATL) is a peripheral T-lymphocyte malignancy caused by an RNA retrovirus, human T-cell leukemia virus type 1. ATL is clinically classified into four disease subtypes. The acute, lymphoma type, and cases of the chronic type involving unfavorable prognostic factors are regarded as aggressive ATL subtypes that require immediate treatment. Dose-intensified chemotherapy, such as the VCAP-AMP-VECP regimen, is considered to be the most recommended treatment for aggressive ATL. However, ATL remains difficult to cure and has an extremely poor prognosis, even when such chemotherapy is employed. Allogeneic stem cell transplantation is the only known curative therapy and is recommended for younger patients with aggressive ATL. However, because of the increasing age at the onset of ATL, only a small fraction of patients with ATL can benefit from such transplants; therefore, there is an unmet medical need for novel drugs. Mogamulizumab, a defucosylated, humanized anti-C-C motif chemokine receptor 4 (CCR4) monoclonal antibody, was developed using a novel glycoengineering technique. Mogamulizumab monotherapy achieved clinically meaningful effects in patients with relapsed aggressive ATL and has exhibited acceptable toxicity profiles both inside and outside of Japan. In addition, lenalidomide has shown promising antitumor activity in patients with ATL. Furthermore, based on the results of translational research, several promising novel agents are currently being investigated and might contribute to improving the prognosis of ATL.


Adult T-cell leukemia-lymphoma ATL CCR4 Mogamulizumab Lenalidomide 



This work was supported in part by the National Cancer Center Research Fund (26-A-4) and JSPS Grant-in-Aid for Scientific Research (16K09865) in Japan.


  1. 1.
    Swerdlow SH, Campo E, Pileri SA et al (2016) The 2016 revision of the world health organization classification of lymphoid neoplasms. Blood 127:2375–2390CrossRefGoogle Scholar
  2. 2.
    Proietti FA, Carneiro-Proietti AB, Catalan-Soares BC et al (2005) Global epidemiology of HTLV-I infection and associated diseases. Oncogene 24:6058–6068CrossRefGoogle Scholar
  3. 3.
    Sonoda S, Li HC, Tajima K (2011) Ethnoepidemiology of HTLV-1 related diseases: ethnic determinants of HTLV-1 susceptibility and its worldwide dispersal. Cancer Sci 102:295–301CrossRefGoogle Scholar
  4. 4.
    Satake M, Yamaguchi K, Tadokoro K (2012) Current prevalence of HTLV-1 in Japan as determined by screening of blood donors. J Med Virol 84:327–335CrossRefGoogle Scholar
  5. 5.
    Gessain A, Cassar O (2012) Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol 3:388CrossRefGoogle Scholar
  6. 6.
    Iwanaga M, Watanabe T, Utsunomiya A et al (2010) Human T-cell leukemia virus type I (HTLV-1) proviral load and disease progression in asymptomatic HTLV-1 carriers: a nationwide prospective study in Japan. Blood 116:1211–1219CrossRefGoogle Scholar
  7. 7.
    Hanchard B (1996) Adult T-cell leukemia/lymphoma in Jamaica: 1986–1995. J Acquir Immune Defic Syndr Hum Retrovirol 13(Suppl 1):S20–S25CrossRefGoogle Scholar
  8. 8.
    Pombo de Oliveira MS, Matutes E, Schulz T et al (1995) T-cell malignancies in Brazil. Clinico-pathological and molecular studies of HTLV-I-positive and -negative cases. Int J Cancer 60:823–827CrossRefGoogle Scholar
  9. 9.
    Tsukasaki K, Tobinai K (2014) Human T-cell lymphotropic virus type I-associated adult T-cell leukemia-lymphoma: new directions in clinical research. Clin Cancer Res 20:5217–5225CrossRefGoogle Scholar
  10. 10.
    Satou Y, Yasunaga J, Yoshida M et al (2006) HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci USA 103:720–725CrossRefGoogle Scholar
  11. 11.
    Yamagishi M, Nakano K, Miyake A et al (2012) Polycomb-mediated loss of miR-31 activates NIK-dependent NF-kappaB pathway in adult T cell leukemia and other cancers. Cancer Cell 21:121–135CrossRefGoogle Scholar
  12. 12.
    Kataoka K, Nagata Y, Kitanaka A et al (2015) Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet 47:1304–1315CrossRefGoogle Scholar
  13. 13.
    Kataoka K, Shiraishi Y, Takeda Y et al (2016) Aberrant PD-L1 expression through 3’-UTR disruption in multiple cancers. Nature 534:402–406CrossRefGoogle Scholar
  14. 14.
    Fujikawa D, Nakagawa S, Hori M et al (2016) Polycomb-dependent epigenetic landscape in adult T-cell leukemia. Blood 127:1790–1802CrossRefGoogle Scholar
  15. 15.
    Shimoyama M (1991) Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the lymphoma study group (1984–87). Br J Haematol 79:428–437CrossRefGoogle Scholar
  16. 16.
    Vose J, Armitage J, Weisenburger D et al (2008) International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 26:4124–4130CrossRefGoogle Scholar
  17. 17.
    Iellem A, Mariani M, Lang R et al (2001) Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med 194:847–853CrossRefGoogle Scholar
  18. 18.
    D’Ambrosio D, Iellem A, Bonecchi R et al (1998) Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J Immunol 161:5111–5115PubMedGoogle Scholar
  19. 19.
    Mariani M, Lang R, Binda E et al (2004) Dominance of CCL22 over CCL17 in induction of chemokine receptor CCR4 desensitization and internalization on human Th2 cells. Eur J Immunol 34:231–240CrossRefGoogle Scholar
  20. 20.
    Ishida T, Utsunomiya A, Iida S et al (2003) Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Clin Cancer Res 9:3625–3634PubMedGoogle Scholar
  21. 21.
    Jones D, O’Hara C, Kraus MD et al (2000) Expression pattern of T-cell-associated chemokine receptors and their chemokines correlates with specific subtypes of T-cell non-Hodgkin lymphoma. Blood 96:685–690PubMedGoogle Scholar
  22. 22.
    Ishida T, Inagaki H, Utsunomiya A et al (2004) CXC chemokine receptor 3 and CC chemokine receptor 4 expression in T-cell and NK-cell lymphomas with special reference to clinicopathological significance for peripheral T-cell lymphoma, unspecified. Clin Cancer Res 10:5494–5500CrossRefGoogle Scholar
  23. 23.
    Yagi H, Seo N, Ohshima A et al (2006) Chemokine receptor expression in cutaneous T cell and NK/T-cell lymphomas: immunohistochemical staining and in vitro chemotactic assay. Am J Surg Pathol 30:1111–1119CrossRefGoogle Scholar
  24. 24.
    Nakagawa M, Schmitz R, Xiao W et al (2014) Gain-of-function CCR4 mutations in adult T cell leukemia/lymphoma. J Exp Med 211:2497–2505CrossRefGoogle Scholar
  25. 25.
    Yamada Y, Tomonaga M, Fukuda H et al (2001) A new G-CSF-supported combination chemotherapy, LSG15, for adult T-cell leukaemia-lymphoma: Japan Clinical oncology group study 9303. Br J Haematol 113:375–382CrossRefGoogle Scholar
  26. 26.
    Tsukasaki K, Utsunomiya A, Fukuda H et al (2007) VCAP-AMP-VECP compared with biweekly CHOP for adult T-cell leukemia-lymphoma: Japan clinical oncology group study JCOG9801. J Clin Oncol 25:5458–5464CrossRefGoogle Scholar
  27. 27.
    Hishizawa M, Kanda J, Utsunomiya A et al (2010) Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia: a nationwide retrospective study. Blood 116:1369–1376CrossRefGoogle Scholar
  28. 28.
    Choi I, Tanosaki R, Uike N et al (2011) Long-term outcomes after hematopoietic SCT for adult T-cell leukemia/lymphoma: results of prospective trials. Bone Marrow Transpl 46:116–118CrossRefGoogle Scholar
  29. 29.
    Ishida T, Hishizawa M, Kato K et al (2012) Allogeneic hematopoietic stem cell transplantation for adult T-cell leukemia-lymphoma with special emphasis on preconditioning regimen: a nationwide retrospective study. Blood 120:1734–1741CrossRefGoogle Scholar
  30. 30.
    Hodson A, Crichton S, Montoto S et al (2011) Use of zidovudine and interferon alfa with chemotherapy improves survival in both acute and lymphoma subtypes of adult T-cell leukemia/lymphoma. J Clin Oncol 29:4696–4701CrossRefGoogle Scholar
  31. 31.
    Gill PS, Harrington W Jr, Kaplan MH et al (1995) Treatment of adult T-cell leukemia-lymphoma with a combination of interferon alfa and zidovudine. N Engl J Med 332:1744–1748CrossRefGoogle Scholar
  32. 32.
    Hermine O, Bouscary D, Gessain A et al (1995) Brief report: treatment of adult T-cell leukemia-lymphoma with zidovudine and interferon alfa. N Engl J Med 332:1749–1751CrossRefGoogle Scholar
  33. 33.
    Datta A, Bellon M, Sinha-Datta U et al (2006) Persistent inhibition of telomerase reprograms adult T-cell leukemia to p53-dependent senescence. Blood 108:1021–1029CrossRefGoogle Scholar
  34. 34.
    Kinpara S, Kijiyama M, Takamori A et al (2013) Interferon-alpha (IFN-alpha) suppresses HTLV-1 gene expression and cell cycling, while IFN-alpha combined with zidovudine induces p53 signaling and apoptosis in HTLV-1-infected cells. Retrovirology 10:52CrossRefGoogle Scholar
  35. 35.
    Bazarbachi A, Plumelle Y, Carlos Ramos J et al (2010) Meta-analysis on the use of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the leukemic subtypes. J Clin Oncol 28:4177–4183CrossRefGoogle Scholar
  36. 36.
    Ishii T, Ishida T, Utsunomiya A et al (2010) Defucosylated humanized anti-CCR4 monoclonal antibody KW-0761 as a novel immunotherapeutic agent for adult T-cell leukemia/lymphoma. Clin Cancer Res 16:1520–1531CrossRefGoogle Scholar
  37. 37.
    Shinkawa T, Nakamura K, Yamane N et al (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473CrossRefGoogle Scholar
  38. 38.
    Niwa R, Shoji-Hosaka E, Sakurada M et al (2004) Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res 64:2127–2133CrossRefGoogle Scholar
  39. 39.
    Niwa R, Sakurada M, Kobayashi Y et al (2005) Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density. Clin Cancer Res 11:2327–2336CrossRefGoogle Scholar
  40. 40.
    Yamamoto K, Utsunomiya A, Tobinai K et al (2010) Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol 28:1591–1598CrossRefGoogle Scholar
  41. 41.
    Ishida T, Joh T, Uike N et al (2012) Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol 30:837–842CrossRefGoogle Scholar
  42. 42.
    Phillips AA, Fields P, Hermine O et al (2016) A prospective, multicenter, randomized study of anti-CCR4 monoclonal antibody mogamulizumab versus investigator’s choice in the treatment of patients with relapsed/refractory adult T-cell leukemia-lymphoma. J Clin Oncol 34. abstrct 7501Google Scholar
  43. 43.
    Ishida T, Jo T, Takemoto S et al (2015) Dose-intensified chemotherapy alone or in combination with mogamulizumab in newly diagnosed aggressive adult T-cell leukaemia-lymphoma: a randomized phase II study. Br J Haematol 169:672–682CrossRefGoogle Scholar
  44. 44.
    Ishida T, Ito A, Sato F et al (2013) Stevens-Johnson Syndrome associated with mogamulizumab treatment of adult T-cell leukemia/lymphoma. Cancer Sci 104:647–650CrossRefGoogle Scholar
  45. 45.
    Fuji S, Inoue Y, Utsunomiya A et al (2016) Pretransplantation anti-CCR4 antibody mogamulizumab against adult T-Cell leukemia/lymphoma is associated with significantly increased risks of severe and corticosteroid-refractory graft-versus-host disease, nonrelapse mortality, and overall mortality. J Clin Oncol 34:3426–3433CrossRefGoogle Scholar
  46. 46.
    Ogura M, Imaizumi Y, Uike N et al (2016) Lenalidomide in relapsed adult T-cell leukaemia-lymphoma or peripheral T-cell lymphoma (ATLL-001): a phase 1, multicentre, dose-escalation study. Lancet Haematol 3:e107–e118CrossRefGoogle Scholar
  47. 47.
    Ishida T, Fujiwara H, Nosaka K et al (2016) Multicenter phase ii study of lenalidomide in relapsed or recurrent adult T-Cell leukemia/lymphoma: ATLL-002. J Clin Oncol 34:4086–4093CrossRefGoogle Scholar
  48. 48.
    Tsukasaki K, Hermine O, Bazarbachi A et al (2009) Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international consensus meeting. J Clin Oncol 27:453–459CrossRefGoogle Scholar
  49. 49.
    Takasaki Y, Iwanaga M, Imaizumi Y et al (2010) Long-term study of indolent adult T-cell leukemia-lymphoma. Blood 115:4337–4343CrossRefGoogle Scholar
  50. 50.
    Katsuya H, Ishitsuka K, Utsunomiya A et al (2015) Treatment and survival among 1594 patients with ATL. Blood 126:2570–2577CrossRefGoogle Scholar
  51. 51.
    Katsuya H, Yamanaka T, Ishitsuka K et al (2012) Prognostic index for acute- and lymphoma-type adult T-cell leukemia/lymphoma. J Clin Oncol 30:1635–1640CrossRefGoogle Scholar
  52. 52.
    Fukushima T, Nomura S, Shimoyama M et al (2014) Japan clinical oncology group (JCOG) prognostic index and characterization of long-term survivors of aggressive adult T-cell leukaemia-lymphoma (JCOG0902A). Br J Haematol 166:739–748CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of HematologyNational Cancer Center HospitalTokyoJapan

Personalised recommendations