Primary Cutaneous T-Cell Lymphomas: Mycosis Fungoides and Sezary Syndrome

  • Christiane QuerfeldEmail author
  • Jasmine Zain
  • Steven T. Rosen
Part of the Cancer Treatment and Research book series (CTAR, volume 176)


Mycosis fungoides and Sézary syndrome are the most common subtypes of all primary cutaneous lymphomas and represent complex diseases that require a multidisciplinary assessment by dermatologists, oncologists, and pathologists. Staging and work-up are critical to guarantee an optimal treatment plan that includes skin-directed and/or systemic regimens depending on the clinical stage, tumor burden, drug-related side effect profile, and patient comorbidities. However, there is no cure and patients frequently relapse, requiring repeated treatment courses for disease control. The study of the tumor microenvironment and molecular mechanisms of these rare neoplasms may assist in the development of new immune therapies providing promising treatment approaches tailored for patients with relapse/refractory disease.


Cutaneous T-cell lymphoma Mycosis fungoides Sézary syndrome Clinical and pathologic features Molecular hallmarks Tumor microenvironment Treatment strategies Immunotherapies 


  1. 1.
    Bradford PT, Devesa SS, Anderson WF, Toro JR (2009) Cutaneous lymphoma incidence patterns in the United States: a population-based study of 3884 cases. Blood 113(21):5064–5073PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Willemze R, Jaffe ES, Burg G et al (2005) WHO-EORTC classification for cutaneous lymphomas. Blood 105(10):3768–3785PubMedPubMedCentralGoogle Scholar
  3. 3.
    Olsen E, Vonderheid E, Pimpinelli N et al (2007) Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood 110(6):1713–1722PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Agar NS, Wedgeworth E, Crichton S et al (2010) Survival outcomes and prognostic factors in mycosis fungoides/Sezary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J Clin Oncol Off J Am Soc Clin Oncol 28(31):4730–4739CrossRefGoogle Scholar
  5. 5.
    Cho-Vega JH, Tschen JA, Duvic M, Vega F (2010) Early-stage mycosis fungoides variants: case-based review. Ann Diagn Pathol 14(5):369–385PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Olsen EA, Whittaker S, Kim YH et al (2011) Clinical end points and response criteria in mycosis fungoides and Sezary syndrome: a consensus statement of the International Society for Cutaneous Lymphomas, the United States Cutaneous Lymphoma Consortium, and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer. J Clin Oncol Off J Am Soc Clin Oncol 29(18):2598–2607CrossRefGoogle Scholar
  7. 7.
    Kempf W, Ostheeren-Michaelis S, Paulli M et al (2008) Granulomatous mycosis fungoides and granulomatous slack skin: a multicenter study of the Cutaneous Lymphoma Histopathology Task Force Group of the European Organization For Research and Treatment of Cancer (EORTC). Arch Dermatol 144(12):1609–1617PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Massone C, Crisman G, Kerl H, Cerroni L (2008) The prognosis of early mycosis fungoides is not influenced by phenotype and T-cell clonality. Br J Dermatol 159(4):881–886PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Klemke CD, Booken N, Weiss C et al (2015) Histopathological and immunophenotypical criteria for the diagnosis of Sezary syndrome in differentiation from other erythrodermic skin diseases: a European Organisation for Research and Treatment of Cancer (EORTC) Cutaneous Lymphoma Task Force Study of 97 cases. Br J Dermatol 173(1):93–105PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Jawed SI, Myskowski PL, Horwitz S, Moskowitz A, Querfeld C (2014) Primary cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome): part I. Diagnosis: clinical and histopathologic features and new molecular and biologic markers. J Am Acad Dermatol 70(2):205 e201–216. Quiz 221–202Google Scholar
  11. 11.
    Nickoloff BJ, Nestle FO, Zheng XG, Turka LA (1994) T lymphocytes in skin lesions of psoriasis and mycosis fungoides express B7-1: a ligand for CD28. Blood 83(9):2580–2586PubMedPubMedCentralGoogle Scholar
  12. 12.
    Jarrousse V, Quereux G, Marques-Briand S, Knol AC, Khammari A, Dreno B (2006) Toll-like receptors 2, 4 and 9 expression in cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome). Eur J Dermatol EJD 16(6):636–641Google Scholar
  13. 13.
    Talpur R, Bassett R, Duvic M (2008) Prevalence and treatment of Staphylococcus aureus colonization in patients with mycosis fungoides and Sezary syndrome. Br J Dermatol 159(1):105–112PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Tokura Y, Heald PW, Yan SL, Edelson RL (1992) Stimulation of cutaneous T-cell lymphoma cells with superantigenic staphylococcal toxins. J Invest Dermatol 98(1):33–37PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Wood GS, Schaffer JM, Boni R et al (1997) No evidence of HTLV-I proviral integration in lymphoproliferative disorders associated with cutaneous T-cell lymphoma. Am J Pathol 150(2):667–673PubMedPubMedCentralGoogle Scholar
  16. 16.
    Pancake BA, Zucker-Franklin D, Coutavas EE (1995) The cutaneous T cell lymphoma, mycosis fungoides, is a human T cell lymphotropic virus-associated disease. A study of 50 patients. J Clin Invest 95(2):547–554PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Herne KL, Talpur R, Breuer-McHam J, Champlin R, Duvic M (2003) Cytomegalovirus seropositivity is significantly associated with mycosis fungoides and Sezary syndrome. Blood 101(6):2132–2136PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Berger CL, Tigelaar R, Cohen J et al (2005) Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 105(4):1640–1647PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Dummer R, Heald PW, Nestle FO et al (1996) Sezary syndrome T-cell clones display T-helper 2 cytokines and express the accessory factor-1 (interferon-gamma receptor beta-chain). Blood 88(4):1383–1389PubMedPubMedCentralGoogle Scholar
  20. 20.
    Krejsgaard T, Ralfkiaer U, Clasen-Linde E et al (2011) Malignant cutaneous T-cell lymphoma cells express IL-17 utilizing the Jak3/Stat3 signaling pathway. J Invest Dermatol 131(6):1331–1338PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Pandiyan P, Zhu J (2015) Origin and functions of pro-inflammatory cytokine producing Foxp3+ regulatory T cells. Cytokine 76(1):13–24PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Guenova E, Watanabe R, Teague JE et al (2013) TH2 cytokines from malignant cells suppress TH1 responses and enforce a global TH2 bias in leukemic cutaneous T-cell lymphoma. Clin Cancer Res Off J Am Assoc Cancer Res 19(14):3755–3763CrossRefGoogle Scholar
  23. 23.
    Campbell JJ, O’Connell DJ, Wurbel MA (2007) Cutting Edge: Chemokine receptor CCR4 is necessary for antigen-driven cutaneous accumulation of CD4 T cells under physiological conditions. J Immunol 178(6):3358–3362PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Clark RA, Watanabe R, Teague JE et al (2012) Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Sci Trans Med 4(117):117ra117PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Reiss Y, Proudfoot AE, Power CA, Campbell JJ, Butcher EC (2001) CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med 194(10):1541–1547PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ferenczi K, Fuhlbrigge RC, Pinkus J, Pinkus GS, Kupper TS (2002) Increased CCR4 expression in cutaneous T cell lymphoma. J Invest Dermatol 119(6):1405–1410PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Kallinich T, Muche JM, Qin S, Sterry W, Audring H, Kroczek RA (2003) Chemokine receptor expression on neoplastic and reactive T cells in the skin at different stages of mycosis fungoides. J Invest Dermatol 121(5):1045–1052PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Sokolowska-Wojdylo M, Wenzel J, Gaffal E et al (2005) Circulating clonal CLA(+) and CD4(+) T cells in Sezary syndrome express the skin-homing chemokine receptors CCR4 and CCR10 as well as the lymph node-homing chemokine receptor CCR7. Br J Dermatol 152(2):258–264PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Dereure O, Levi E, Vonderheid EC, Kadin ME (2002) Infrequent Fas mutations but no Bax or p53 mutations in early mycosis fungoides: a possible mechanism for the accumulation of malignant T lymphocytes in the skin. J Invest Dermatol 118(6):949–956PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Wu J, Nihal M, Siddiqui J, Vonderheid EC, Wood GS (2009) Low FAS/CD95 expression by CTCL correlates with reduced sensitivity to apoptosis that can be restored by FAS upregulation. J Invest Dermatol 129(5):1165–1173PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Nielsen M, Kaestel CG, Eriksen KW et al (1999) Inhibition of constitutively activated Stat3 correlates with altered Bcl-2/Bax expression and induction of apoptosis in mycosis fungoides tumor cells. Leukemia 13(5):735–738PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Sommer VH, Clemmensen OJ, Nielsen O et al (2004) In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia 18(7):1288–1295PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Querfeld C, Rosen ST, Guitart J et al (2007) Phase II trial of subcutaneous injections of human recombinant interleukin-2 for the treatment of mycosis fungoides and Sezary syndrome. J Am Acad Dermatol 56(4):580–583PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Zhang XH, Nam S, Wu J et al (2018) Multi-Kinase Inhibitor with Anti-p 38gamma Activity in Cutaneous T-Cell Lymphoma. J Investig DermatolGoogle Scholar
  35. 35.
    Querfeld C, Leung S, Myskowski PL et al (2018) Primary T cells from cutaneous T-cell lymphoma skin explants display an exhausted immune checkpoint profile. Cancer Immunol Res 6(8):900–909PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Zajac AJ, Blattman JN, Murali-Krishna K et al (1998) Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 188(12):2205–2213PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Mao X, Orchard G, Lillington DM, Russell-Jones R, Young BD, Whittaker SJ (2003) Amplification and overexpression of JUNB is associated with primary cutaneous T-cell lymphomas. Blood 101(4):1513–1519PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Mao X, Lillington D, Scarisbrick JJ et al (2002) Molecular cytogenetic analysis of cutaneous T-cell lymphomas: identification of common genetic alterations in Sezary syndrome and mycosis fungoides. Br J Dermatol 147(3):464–475PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kiel MJ, Sahasrabuddhe AA, Rolland DC et al (2015) Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sezary syndrome. Nat Commun 6:8470PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Woollard WJ, Pullabhatla V, Lorenc A et al (2016) Candidate driver genes involved in genome maintenance and DNA repair in Sezary syndrome. Blood 127(26):3387–3397PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ungewickell A, Bhaduri A, Rios E et al (2015) Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2. Nat Genet 47(9):1056–1060PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Scarisbrick JJ, Woolford AJ, Calonje E et al (2002) Frequent abnormalities of the p15 and p16 genes in mycosis fungoides and sezary syndrome. J Invest Dermatol 118(3):493–499PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Ralfkiaer U, Hagedorn PH, Bangsgaard N et al (2011) Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood 118(22):5891–5900PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kopp KL, Ralfkiaer U, Gjerdrum LM et al (2013) STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma. Cell Cycle 12(12):1939–1947PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Rubio Gonzalez B, Zain J, Rosen ST, Querfeld C (2016) Tumor microenvironment in mycosis fungoides and Sezary syndrome. Curr Opin Oncol 28(1):88–96PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Rubben A, Kempf W, Kadin ME, Zimmermann DR, Burg G (2004) Multilineage progression of genetically unstable tumor subclones in cutaneous T-cell lymphoma. Exp Dermatol 13(8):472–483PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Vermeer MH, van Doorn R, Dukers D, Bekkenk MW, Meijer CJ, Willemze R (2001) CD8+ T cells in cutaneous T-cell lymphoma: expression of cytotoxic proteins, Fas Ligand, and killing inhibitory receptors and their relationship with clinical behavior. J Clin Oncol Off J Am Soc Clin Oncol 19(23):4322–4329CrossRefGoogle Scholar
  48. 48.
    Goteri G, Filosa A, Mannello B et al (2003) Density of neoplastic lymphoid infiltrate, CD8+ T cells, and CD1a+ dendritic cells in mycosis fungoides. J Clin Pathol 56(6):453–458PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hoppe RT, Medeiros LJ, Warnke RA, Wood GS (1995) CD8-positive tumor-infiltrating lymphocytes influence the long-term survival of patients with mycosis fungoides. J Am Acad Dermatol 32(3):448–453PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Gjerdrum LM, Woetmann A, Odum N et al (2007) FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival. Leukemia 21(12):2512–2518PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Krejsgaard T, Odum N, Geisler C, Wasik MA, Woetmann A (2012) Regulatory T cells and immunodeficiency in mycosis fungoides and Sezary syndrome. Leukemia 26(3):424–432PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Berger CL, Hanlon D, Kanada D et al (2002) The growth of cutaneous T-cell lymphoma is stimulated by immature dendritic cells. Blood 99(8):2929–2939PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kasprzycka M, Zhang Q, Witkiewicz A et al (2008) Gamma c-signaling cytokines induce a regulatory T cell phenotype in malignant CD4+ T lymphocytes. J Immunol 181(4):2506–2512PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Querfeld C. CS, Leung S, Myskowski P, Horwitz S, Halpern A, Young J (2014) 1695 T cells in CTCL have an exhausted phenotype while cutenaous dentritic cells display a normally activated mature phenotype. BloodGoogle Scholar
  55. 55.
    Rabenhorst A, Schlaak M, Heukamp LC et al (2012) Mast cells play a protumorigenic role in primary cutaneous lymphoma. Blood 120(10):2042–2054PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Wu X, Schulte BC, Zhou Y et al (2014) Depletion of M2-like tumor-associated macrophages delays cutaneous T-cell lymphoma development in vivo. J Invest Dermatol 134(11):2814–2822PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Sugaya M, Miyagaki T, Ohmatsu H et al (2012) Association of the numbers of CD163(+) cells in lesional skin and serum levels of soluble CD163 with disease progression of cutaneous T cell lymphoma. J Dermatol Sci 68(1):45–51PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Mocellin S, Marincola FM, Young HA (2005) Interleukin-10 and the immune response against cancer: a counterpoint. J Leukoc Biol 78(5):1043–1051PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Zayed AA, Abdel-Halim MR, Sayed KS, Mohammed FN, Hany DM, Amr KS (2014) Transforming growth factor-beta1 gene polymorphism in mycosis fungoides. Clin Exp Dermatol 39(7):806–809PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Geskin LJ, Viragova S, Stolz DB, Fuschiotti P (2015) Interleukin-13 is over-expressed in cutaneous T-cell lymphoma cells and regulates their proliferation. BloodGoogle Scholar
  61. 61.
    Marzec M, Halasa K, Kasprzycka M et al (2008) Differential effects of interleukin-2 and interleukin-15 versus interleukin-21 on CD4+ cutaneous T-cell lymphoma cells. Cancer Res 68(4):1083–1091PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Zelenetz AD GL, Wierde WG et al (2015) NCCN clinical practive guidelines in oncology: Non-Hodking’s lymphomas, v 2.2015. Accessed 28 July 2015Google Scholar
  63. 63.
    Jawed SI, Myskowski PL, Horwitz S, Moskowitz A, Querfeld C (2014) Primary cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome): part II. Prognosis, management, and future directions. J Am Acad Dermatol 70(2):223 e221–217; quiz 240-222Google Scholar
  64. 64.
    Thomas TO, Agrawal P, Guitart J et al (2013) Outcome of patients treated with a single-fraction dose of palliative radiation for cutaneous T-cell lymphoma. Int J Radiat Oncol Biol Phys 85(3):747–753PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Olsen EA, Rosen ST, Vollmer RT et al (1989) Interferon alfa-2a in the treatment of cutaneous T cell lymphoma. J Am Acad Dermatol 20(3):395–407PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Olsen EA (2003) Interferon in the treatment of cutaneous T-cell lymphoma. Dermatol Ther 16(4):311–321PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Stadler R, Otte HG (1995) Combination therapy of cutaneous T cell lymphoma with interferon alpha-2a and photochemotherapy. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer 139:391–401Google Scholar
  68. 68.
    Duvic M, Martin AG, Kim Y et al (2001) Phase 2 and 3 clinical trial of oral bexarotene (Targretin capsules) for the treatment of refractory or persistent early-stage cutaneous T-cell lymphoma. Arch Dermatol 137(5):581–593PubMedPubMedCentralGoogle Scholar
  69. 69.
    Duvic M, Hymes K, Heald P et al (2001) Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J Clin Oncol Off J Am Soc Clin Oncol 19(9):2456–2471CrossRefGoogle Scholar
  70. 70.
    Querfeld C, Rosen ST, Guitart J et al (2004) Comparison of selective retinoic acid receptor- and retinoic X receptor-mediated efficacy, tolerance, and survival in cutaneous t-cell lymphoma. J Am Acad Dermatol 51(1):25–32PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Zackheim HS, Kashani-Sabet M, Hwang ST (1996) Low-dose methotrexate to treat erythrodermic cutaneous T-cell lymphoma: results in twenty-nine patients. J Am Acad Dermatol 34(4):626–631PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Zackheim HS, Kashani-Sabet M, McMillan A (2003) Low-dose methotrexate to treat mycosis fungoides: a retrospective study in 69 patients. J Am Acad Dermatol 49(5):873–878PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Menting SP, Dekker PM, Limpens J, Hooft L, Spuls PI (2016) Methotrexate dosing regimen for Plaque-type Psoriasis: a Systematic review of the use of test-dose, start-dose, dosing scheme, dose adjustments, maximum dose and folic acid supplementation. Acta Dermato-Venereologica 96(1):23–28PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Izbicka E, Diaz A, Streeper R et al (2009) Distinct mechanistic activity profile of pralatrexate in comparison to other antifolates in in vitro and in vivo models of human cancers. Cancer Chemother Pharmacol 64(5):993–999PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wood GS, Wu J (2015) Methotrexate and Pralatrexate. Dermatol Clin 33(4):747–755PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Whittaker SJ, Demierre MF, Kim EJ et al (2010) Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol 28(29):4485–4491CrossRefGoogle Scholar
  77. 77.
    Olsen EA, Kim YH, Kuzel TM et al (2007) Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin oncol Off J Am Soc Clin Oncol 25(21):3109–3115CrossRefGoogle Scholar
  78. 78.
    Piekarz RL, Frye R, Turner M et al (2009) Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin oncol Off J Am Soc Clin Oncol 27(32):5410–5417CrossRefGoogle Scholar
  79. 79.
    Cedeno-Laurent F, Singer EM, Wysocka M et al (2015) Improved pruritus correlates with lower levels of IL-31 in CTCL patients under different therapeutic modalities. Clin Immunol (Orlando, FLA) 158(1):1–7PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Singer EM, Shin DB, Nattkemper LA et al (2013) IL-31 is produced by the malignant T-cell population in cutaneous T-Cell lymphoma and correlates with CTCL pruritus. J Invest Dermatol 133(12):2783–2785PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Kim YH, Tavallaee M, Sundram U et al (2015) Phase II investigator-initiated study of Brentuximab Vedotin in Mycosis Fungoides and Sezary Syndrome with variable CD30 expression level: a multi-institution collaborative project. J Clin oncol Off J Am Soc Clin Oncol 33(32):3750–3758CrossRefGoogle Scholar
  82. 82.
    Kim YWS, Horwitz S, Duvic M, Dummer R, Scarisbrick J, Quaglino P, Zinzani PL, Wolter P, Wang Y, Palanca-Wessels MC, Zagadailov E, Trepicchio W, Liu Y, Little M, Prince M (2016) Brentuximab Vedotin Demonstrates Significantly Superior Clinical Outcomes in Patients with CD30-Expressing Cutaneous T Cell Lymphoma Versus Physician’s Choice (Methotrexate or Bexarotene): the Phase 3 Alcanza Study. ASH 182Google Scholar
  83. 83.
    Querfeld C, Mehta N, Rosen ST et al (2009) Alemtuzumab for relapsed and refractory erythrodermic cutaneous T-cell lymphoma: a single institution experience from the Robert H. Lurie Comprehensive Cancer Center. Leukemia & lymphoma 50(12):1969–1976CrossRefGoogle Scholar
  84. 84.
    Bernengo MG, Quaglino P, Comessatti A et al (2007) Low-dose intermittent alemtuzumab in the treatment of Sezary syndrome: clinical and immunologic findings in 14 patients. Haematologica 92(6):784–794PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Duvic M, Evans M, Wang C (2016) Mogamulizumab for the treatment of cutaneous T-cell lymphoma: recent advances and clinical potential. Therapeutic Adv Hematol 7(3):171–174CrossRefGoogle Scholar
  86. 86.
    Duvic M, Pinter-Brown LC, Foss FM et al (2015) Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with cutaneous T-cell lymphoma. Blood 125(12):1883–1889PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Ogura M, Ishida T, Hatake K et al (2014) Multicenter phase II study of mogamulizumab (KW-0761), a defucosylated anti-cc chemokine receptor 4 antibody, in patients with relapsed peripheral T-cell lymphoma and cutaneous T-cell lymphoma. J clin Oncol Off J Am Soc Clin Oncol 32(11):1157–1163CrossRefGoogle Scholar
  88. 88.
    Ishida T, Ito A, Sato F et al (2013) Stevens-Johnson Syndrome associated with mogamulizumab treatment of adult T-cell leukemia/ lymphoma. Cancer Sci 104(5):647–650CrossRefGoogle Scholar
  89. 89.
    Kim YH, Bagot M, Pinter-Brown L et al (2017) Anti-CCR4 monoclonal antibody, mogamulizumab, demonstrates significant improvement in PFS compared to vorinostat in patients with previously treated cutaneous T-cell lymphoma (CTCL): results from the phase III MAVORIC study. Blood 130(Supplement 1):817. Blood 130(supplement 1):817aGoogle Scholar
  90. 90.
    Khodadoust M, Rook A, Porcu P, Foss F, Moskowitz A,Shustov A, Shanbhag S, Sokol L, Shine R, Fling S, Li S, Rabhar Z, Kim J,Yang Y, Yearley j, Chartash E, Townson S, Subrahmanyam P, Maecker H, Alizadeh A, Dai J, Horwitz S, Sharon E, Kohrt H, MD24, Cheever M, Kim Y (2016) Pembrolizumab for treatment of relapsed/Refractory Mycosis Fungoides and Sezary Syndrome: clinical Efficacy in a Citn Multicenter Phase 2 Study ASH 181Google Scholar
  91. 91.
    Sul J, Blumenthal GM, Jiang X, He K, Keegan P, Pazdur R (2016) FDA approval summary: Pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist 21(5):643–650PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Duarte RF, Canals C, Onida F et al (2010) Allogeneic hematopoietic cell transplantation for patients with mycosis fungoides and Sezary syndrome: a retrospective analysis of the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol Off J Am Soc Clin Oncol 28(29):4492–4499CrossRefGoogle Scholar
  93. 93.
    Duvic M, Donato M, Dabaja B et al (2010) Total skin electron beam and non-myeloablative allogeneic hematopoietic stem-cell transplantation in advanced mycosis fungoides and Sezary syndrome. J Clin Oncol Off J Am Soc Clin Oncol 28(14):2365–2372CrossRefGoogle Scholar
  94. 94.
    Wu PA, Kim YH, Lavori PW, Hoppe RT, Stockerl-Goldstein KE (2009) A meta-analysis of patients receiving allogeneic or autologous hematopoietic stem cell transplant in mycosis fungoides and Sezary syndrome. Biol Blood Marrow Trans J Am Soc Blood Marrow Transpl 15(8):982–990CrossRefGoogle Scholar
  95. 95.
    Balakrishnan K, Peluso M, Fu M et al (2015) The phosphoinositide-3-kinase (PI3 K)-delta and gamma inhibitor, IPI-145 (Duvelisib), overcomes signals from the PI3 K/AKT/S6 pathway and promotes apoptosis in CLL. LeukemiaGoogle Scholar
  96. 96.
    Horwitz S, Porcu P, Flinn I, Kahl B, Sweeney J, Stern H, Douglas M, Allen M, Kelly P, Foss F (2014) 803 Duvelisib (IPI-145), a Phosphoinositide-3-Kinase-δ,γ Inhibitor, Shows Activity in Patients with Relapsed/Refractory T-Cell Lymphoma. Blood Suppl 803Google Scholar
  97. 97.
    Querfeld C, Foss FM, Pinter-Brown L et al (2017) Phase 1 study of the safety and efficacy of MRG-106, a synthetic Inhibitor of microRNA-155, in CTCL patients. Blood 130:820Google Scholar
  98. 98.
    Trialsgov C (2017) A phase 1/2 trial of durvalumab (medi4736) when given as a single agent or in combiantion with lenalidomide in patients with relapsed/refractory peripheral t cell lymphoma inclduing cutaneous T cell lymphoma. NCT03011814Google Scholar
  99. 99.
    Querfeld C, Thompson JA, Taylor M et al (2017) A single direct intratumoral injection of TTI-621 (SIRPαFc) induces antitumor activity in patients with relapsed/refractory mycosis fungoides and Sézary syndrome: preliminary findings employing an immune checkpoint inhibitor blocking the CD47 “do not eat” signal. Blood 103. Abstract 4076Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christiane Querfeld
    • 1
    • 2
    • 3
    • 4
  • Jasmine Zain
    • 2
    • 4
  • Steven T. Rosen
    • 2
    • 4
  1. 1.Division of DermatologyCity of HopeDuarteUSA
  2. 2.Department of Hematology/Hematopoietic Cell TransplantationDuarteUSA
  3. 3.Department of PathologyDuarteUSA
  4. 4.Toni Stephenson Lymphoma Center, City of Hope National Medical CenterDuarteUSA

Personalised recommendations