Advertisement

The Mereologies of Upper Ontologies

  • Lydia Silva Muñoz
  • Michael GrüningerEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 914)

Abstract

Mereology, the formal theory of parts and wholes, has a played a prominent role within applied ontology. As a fundamental set of concepts for commonsense reasoning, it also appears in a number of upper level ontologies. Furthermore, such upper-level ontologies provide an account of the most basic, domain-independent, existing entities, such as time, space, objects, and processes. In this paper, we verify the core characterization of mereologies of the Suggested Upper Merged Ontology (SUMO), and the mereology of the Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE), while relating their axiomatizations via ontology mapping. We show that the existing axiomatization of SUMO omits some of the intended models of classical mereology, and we propose the correction and addition of axioms to address this issue. In addition, we show the formal relationship between the axiomatization of mereology in both upper-level ontologies.

Keywords

DOLCE DOLCE-CORE SUMO Ontology mapping Ontology verification Upper-level ontology Mereology Topology Mereotopology 

References

  1. 1.
    Benzmüller, C., Pease, A.: Higher-order aspects and context in SUMO. J. Web Sem. 12, 104–117 (2012)CrossRefGoogle Scholar
  2. 2.
    Borgo, S., Masolo, C.: Foundational choices in DOLCE. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 361–381. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-92673-3_16CrossRefGoogle Scholar
  3. 3.
    Casati, R., Varzi, A.C.: Parts and Places: The Structures of Spatial Representation. A Bradford Book. MIT Press, Cambridge (1999)Google Scholar
  4. 4.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002). Cambridge mathematical text booksCrossRefGoogle Scholar
  5. 5.
    Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, Cambridge (1972)zbMATHGoogle Scholar
  6. 6.
    Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38721-0CrossRefzbMATHGoogle Scholar
  7. 7.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A.: Sweetening WORDNET with DOLCE. AI Mag. 24(3), 13–24 (2003)zbMATHGoogle Scholar
  8. 8.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45810-7_18CrossRefzbMATHGoogle Scholar
  9. 9.
    Grenon, P., Smith, B.: SNAP and SPAN: towards dynamic spatial ontology. Spat. Cogn. Comput. 4(1), 69–103 (2004)CrossRefGoogle Scholar
  10. 10.
    Grüninger, M., Hahmann, T., Hashemi, A., Ong, D.: Ontology verification with repositories. In: Proceedings of the Sixth International Conference Formal Ontology in Information Systems, FOIS 2010, Toronto, Canada, 11–14 May 2010, pp. 317–330 (2010)Google Scholar
  11. 11.
    Guarino, N.: Formal ontology and information systems. In: Formal Ontology in Information Systems - Proceedings of FOIS 1998, Trento, Italy, 6–8 June 1998, pp. 3–15. IOS Press, Amsterdam, pp. 3–15 (1998)Google Scholar
  12. 12.
    Guarino, N., Welty, C.: Evaluating ontological decisions with ontoclean. Commun. ACM 45(2), 61–65 (2002)CrossRefGoogle Scholar
  13. 13.
    Hayes, P.: Catalog of temporal theories. Technical report UIUC-BI-AI-96-01. University of Illinois Urbana-Champagne (1996)Google Scholar
  14. 14.
    Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb deliverable D18 ontology library (final). Technical report, IST Project 2001–33052 WonderWeb: Ontology Infrastructure for the Semantic Web (2003)Google Scholar
  15. 15.
    McCune. W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/mccune/prover9/
  16. 16.
    Silva Muñoz, L., Grüninger, M.: Verifying and mapping the mereotopology of upper-level ontologies. In: Knowledge Engineering and Ontology Design, KEOD 2016, Porto, Portugal, 9–11 November 2016, pp. 31–42 (2016)Google Scholar
  17. 17.
    Niles, I., Pease, A.: Linking lexicons and ontologies: mapping WordNet to the suggested upper merged ontology. In: Proceedings of the 2003 International Conference on Information and Knowledge Engineering (IKE 2003), Las Vegas, Nevada (2003)Google Scholar
  18. 18.
    Niles, I., Pease, A.: Towards a standard upper ontology. In FOIS 2001: Proceedings of the international conference on Formal Ontology in Information Systems, pp. 2–9. ACM, New York (2001)Google Scholar
  19. 19.
    Pearce, D., Valverde, A.: Synonymous theories and knowledge representations in answer set programming. J. Comput. Syst. Sci. 78(1), 86–104 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Silva Muñoz, L., Grüninger, M.: Mapping and verification of the time ontology in SUMO. In: Formal Ontology in Information Systems - Proceedings of the 9th International Conference, FOIS, 6–9 July 2016, Annecy, France (2016)Google Scholar
  21. 21.
    Varzi, A.C.: Spatial reasoning and ontology: parts, wholes, and locations. In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logicspages, pp. 945–1038. Springer, Dordrecht (2007).  https://doi.org/10.1007/978-1-4020-5587-4_15CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Computer ScienceUniversity of TorontoTorontoCanada
  2. 2.Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations