Advertisement

A Mediation Model of Absorptive and Innovative Capacities: The Case of Spanish Family Businesses

  • Felipe Hernández-PerlinesEmail author
  • Wenkai Xu
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 805)

Abstract

This work analyses the mediating effect of innovative capacity on the influence of absorptive capacity in the performance of family businesses. For the analysis of results, the use of a second-generation structural equation method is proposed (PLS-SEM) using smartPLS 3.2.7 computer software, applied to the data of 218 Spanish family businesses. The main contribution of this work is that the performance of family businesses is determined by the absorptive capacity (absorptive capacity is able to explain 36.1% of the performance variability of family businesses). The second contribution of this work is that the influence of the absorptive capacity on the performance of family businesses is strengthened by the effect of innovative capacity, explaining 40.6% of the variability. The third contribution is that the absorptive capacity is a precedent for innovation capacity, able to explain 50% of its variability.

Keywords

Absorptive capacity Innovative capacity Family performance Mediating effect PLS 

References

  1. 1.
    Cohen, W.M., Levinthal, D.A.: Absorptive capacity: a new perspective on learning and innovation. Adm. Sci. Q. 2(5), 99–110 (1990)Google Scholar
  2. 2.
    Jansen, J.J.P., Van den Bosch, F.A.J., Volberda, H.W.: Managing potential and realized absorptive capacity: how do organizational antecedents matter? Acad. Manag. J. 48(6), 999–1015 (2005)CrossRefGoogle Scholar
  3. 3.
    Van den Bosch, F.A.J., Volberda, H.W., De Boer, M.: Coevolution of firm absorptive capacity and knowledge environment: organizational forms and combinative capabilities. Organ. Sci. 10(5), 551–568 (1999)CrossRefGoogle Scholar
  4. 4.
    Floyd, S.W., Lane, P.J.: Strategizing throughout the organization: managing role conflict in strategic renewal. Acad. Manag. Rev. 25(1), 154–177 (2000)CrossRefGoogle Scholar
  5. 5.
    Zahra, S.A., George, G.: Absorptive capacity: a review, reconceptualization and extension. Acad. Manag. Rev. 27(2), 185–203 (2002)CrossRefGoogle Scholar
  6. 6.
    Corona, J., Del Sol, I.: La Empresa Familiar en España (2015), Instituto de la Empresa Familiar, Barcelona (2016)Google Scholar
  7. 7.
    Astrachan, J.H., Shanker, M.C.: Family businesses contribution to the US economy: a closer look. Fam. Bus. Rev. 16(3), 211–219 (2003)CrossRefGoogle Scholar
  8. 8.
    Ringle, C.M., Wende, S., Becker, J.M.: Smart PLS 3. Boenningstedt: SmartPLS GmbH (2015). http://www.smartpls.com
  9. 9.
    Prahalad C.K., Hamel G.: The core competence of the corporation. Harv. Bus. Rev. 68(3), 79–91 (1990)Google Scholar
  10. 10.
    Teece, D.J., Pisano, G., Shuen, A.: Dynamic capabilities and strategic management. Strateg. Manag. J. 18(7), 509–533 (1997)CrossRefGoogle Scholar
  11. 11.
    Makadok, R.: Toward a synthesis of the resource-based and dynamic-capability views of rent creation. Strateg. Manag. J. 22(5), 387–401 (2001)CrossRefGoogle Scholar
  12. 12.
    Zollo, M., Winter, S.G.: Deliberate learning and the evolution of dynamic capabilities. Organ. Sci. 13(3), 339–351 (2002)CrossRefGoogle Scholar
  13. 13.
    Helfat, C.E., Finkelstein, S., Mitchell, W., Peteraf, M., Singh, H., Teece, D., Winter, S.G.: Dynamic Capabilities: Understanding Strategic Change in Organizations. Wiley, Oxford (2007)Google Scholar
  14. 14.
    Wang, C.L., Ahmed, P.K.: Dynamic capabilities: a review and research agenda. Int. J. Manag. Rev. 9(1), 31–51 (2007)CrossRefGoogle Scholar
  15. 15.
    Lane, P.J., Koka, B.R., Pathak, S.: The reification of absorptive capacity: a critical review and rejuvenation of the construct. Acad. Manag. Rev. 31(4), 833–863 (2007)CrossRefGoogle Scholar
  16. 16.
    Flatten, T.C., Engelen, A., Zahra, S.A., Brettel, M.: A measure of absorptive capacity: scale development and validation. Eur. Manag. J. 29(2), 98–116 (2011)CrossRefGoogle Scholar
  17. 17.
    Prajogo, D.I., Sohal, A.S.: The integration of TQM and technology/R&D management in determining quality and innovation performance. Omega 34(3), 296–312 (2006)CrossRefGoogle Scholar
  18. 18.
    Wiklund, J., Shepherd, D.: Entrepreneurial orientation and small business performance: a configurational approach. J. Bus. Ventur. 20(1), 71–91 (2005)CrossRefGoogle Scholar
  19. 19.
    Chirico, F., Sirmon, D.G., Sciascia, S., Mazzola, P.: Resource orchestration in family firms: investigating how entrepreneurial orientation, generational involvement, and participative strategy affect performance. Strateg. Entrep. J. 5(4), 307–326 (2011)CrossRefGoogle Scholar
  20. 20.
    Yáñez-Araque, B., Hernández-Perlines, F., Moreno-García, J.: From training to organizational behavior: a mediation model through absorptive and innovative capacities. Front. Psychol. 8, 1532 (2017)CrossRefGoogle Scholar
  21. 21.
    Hernández-Perlines, F., Moreno-García, J., Yáñez-Araque, B.: Using fuzzy-set qualitative comparative analysis to develop an absorptive capacity-based view of training. J. Bus. Res. 69(4), 1510–1515 (2016)CrossRefGoogle Scholar
  22. 22.
    Chrisman, J.J., Chua, J.H., Sharma, P.: Trends and directions in the development of a strategic management theory of the family firm. Entrep. Theor. Pract. 29(5), 555–576 (2005)CrossRefGoogle Scholar
  23. 23.
    Barclay, D., Higgins, C., Thompson, R.: The partial least squares (PLS) approach to causal modeling: personal computer adoption and use as an illustration. Technol. Stud. 2(2), 285–309 (1995)Google Scholar
  24. 24.
    Chin, W.W.: The partial least squares approach to structural equation modeling. Modern Methods Bus. Res. 295(2), 295–336 (1998)Google Scholar
  25. 25.
    Fornell, C., Larcker, D.F.: Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 18(1), 39–50 (1981)CrossRefGoogle Scholar
  26. 26.
    Henseler, J., Ringle, C.M., Sarstedt, M.: A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 43(1), 115–135 (2015)CrossRefGoogle Scholar
  27. 27.
    Hair, J.F., Hult, G.T.M., Ringle, C.M., Sarstedt, M.: A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage, Thousand Oaks (2017)zbMATHGoogle Scholar
  28. 28.
    Preacher, K.J., Hayes, A.F.: Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods 40(3), 879–891 (2008)CrossRefGoogle Scholar
  29. 29.
    Cepeda, G., Henseler, J., Ringle, C., Roldán, J.L.: Prediction-oriented modeling in business research by means of partial least squares path modeling. J. Bus. Res. 69(10), 4545–4551 (2016)CrossRefGoogle Scholar
  30. 30.
    Charão Ferreira, G., Matos Ferreira, J.: Absorptive capacity: an analysis in the context of brazilian family firms. RAM. Rev. de Adm. Mackenzie 18(1), 174–204 (2017)CrossRefGoogle Scholar
  31. 31.
    Meroño-Cerdán, A.L., López-Nicolás, C., Molina-Castillo, F.J.: Risk aversion, innovation and performance in family firms. Econ. Innov. New Technol. 27(2), 189–203 (2018)CrossRefGoogle Scholar
  32. 32.
    Rong, B., Wilkinson, I.F.: What do managers’ survey responses mean and what affects them? The case of market orientation and firm performance. Australas. Mark. J. 19(3), 137–147 (2011)CrossRefGoogle Scholar
  33. 33.
    Woodside, A.G.: Moving beyond multiple regression analysis to algorithms: calling for adoption of a paradigm shift from symmetric to asymmetric thinking in data analysis and crafting theory. J. Bus. Res. 66(4), 463–472 (2013)CrossRefGoogle Scholar
  34. 34.
    Woodside, A.G., Prentice, C., Larsen, A.: Revisiting problem gamblers’ harsh gaze on casino services: applying complexity theory to identify exceptional customers. Psychol. Mark. 32(1), 65–77 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Castilla-La ManchaToledoSpain

Personalised recommendations