Cancer Rehabilitation

  • Ameet NagpalEmail author
  • Jacob Fehl
  • Brittany Bickelhaupt
  • Maxim S. Eckmann
  • Brian Boies
  • Jon Benfield


Cancer rehabilitation encompasses the treatment of physical and functional limitations due to the clinical course of cancer and its therapeutic toxicities. Cancer’s disabling constitution is multifactorial owing to direct exacerbation of medical comorbidities potentiated by malignant progression and side effects of pain management, chemotherapy, and radiation. Efficacious cancer rehabilitation requires the knowledge of antineoplastic therapy-induced syndromes, a multimodal treatment plan, and consideration of cancer-related interests on individual patients. The potential for cancer rehabilitation exists in all body systems, and the treating physician should become familiar with its prognosis, expected outcomes, treatment modalities, and predicted functional deterioration (Braddom RL Physical medicine & rehabilitation. Elsevier, Philadelphia, 2016). Long-term sequelae continue to affect survivors due to the variable treatment response and high likelihood of permanent neuromuscular or cognitive deficits.

The purpose of this chapter is to provide readers with the knowledge of expected complications from cancer and its treatments and how to appropriately diagnose and treat these conditions. Vocational rehabilitation and general cancer rehabilitation will be discussed to provide the reader with adequate background to properly direct patient care.


Rehabilitation Fibrosis Chemotherapy Lymphedema Amputation Radiation Cognitive Neuromuscular 


  1. 1.
    Braddom RL. Physical medicine & rehabilitation. Philadelphia: Elsevier; 2016.Google Scholar
  2. 2.
    Montiero M. Physical therapy implications following the TRAM procedure. Phys Ther. 1997;77:765–70.CrossRefGoogle Scholar
  3. 3.
    Brown H. Anatomy of the spinal accessory nerve plexus: relevance to head and neck cancer and atherosclerosis. Exp Biol Med. 2002;227:570–8.CrossRefGoogle Scholar
  4. 4.
    McNeely MI, Parlaiment MB, Seikaly H, et al. Effect of exercise on upper extremity pain and dysfunction in head and neck cancer survivors: a randomized controlled trial. Cancer. 2008;113:214–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Rogers LQ, Anton PM, Fogleman A, et al. Systematic review of the role of bisphosphonates on skeletal morbidity in metastatic cancer. BMJ. 2003;327:469.CrossRefGoogle Scholar
  6. 6.
    Happ MB. Interpretation of nonvocal behavior and the meaning of voicelessness in critical care. Soc Sci Med. 2000;50:1247–55.PubMedCrossRefGoogle Scholar
  7. 7.
    Abbas JS, et al. The surgical treatment and outcome of soft-tissue sarcoma. Arch Surg. 1981;116:765–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Shiu MH, et al. Surgical treatment of 297 soft tissue sarcomas of the lower extremity. Ann Surg. 1975;182:597–602.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Karakousis CP, Proimakis C, Walsh DL. Primary soft tissue sarcoma of the extremities in adults. Br J Surg. 1995;82:1208–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Parsons CM, et al. The role of radical amputations for extremity tumors: a single institution experience and review of the literature. J Surg Oncol. 2012;105:149–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Whelan JS, et al. Survival from high-grade localized extremity osteosarcoma: combined results and prognostic facts from three European Osteosarcoma Intergroup randomized controlled trials. Ann Oncol. 2011;23:1607–16.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Finn HA, Simon MA. Limb-salvage surgery in the treatment of osteosarcoma in skeletally immature individuals. Orthop Surg Rehab Med. 1991;262:108–18.Google Scholar
  13. 13.
    Carter SR, et al. Hindquarter amputation for tumors of the musculoskeletal system. J Bone Joint Surg Br. 1990;72:490–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Schwarz RE, et al. Long-term survival after radical operations for cancer treatment-induced sarcomas: how two survivors invite reflection on oncologic treatment concepts. Am J Clin Oncol. 2002;25:244–7.PubMedCrossRefGoogle Scholar
  15. 15.
    McCormick Z, Chang-Chien G, Marshall B, Huang M, Harden RN. Phantom limb pain: a systematic neuroanatomical-based review of pharmacological treatment. Pain Med. 2014;15:292–305.PubMedCrossRefGoogle Scholar
  16. 16.
    Alviar MJM, Hale T, Dungca M. Pharmacologic interventions for treating phantom limb pain: Review. Cochrane Syst Rev. 2011;12:CD006380.Google Scholar
  17. 17.
    Nikolajsen L, et al. Randomized trial of epidural bupivacaine and morphine in prevention of stump and phantom pain in lower-extremity limb amputation. Lancet. 1997;350:1353–7.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Soffietti R, Trevisan E, Ruda R. Neurologic complications of chemotherapy and other newer and experimental approaches. Handb Clin Neurol. 2014;121:1199–218.PubMedCrossRefGoogle Scholar
  19. 19.
    Sioka C, Kryritsis AP. Central and peripheral nervous system toxicity of common chemotherapeutic agents. Cancer Chemother Pharmacol. 2009;63:761–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Carla C, Verstappen J, Heimans K, et al. Neurotoxin complications of chemotherapy in patients with cancer. Drugs. 2003;63:1549–63.CrossRefGoogle Scholar
  21. 21.
    Chauvenet AR, et al. Vincristine-induced neuropathy as the initial presentation of Charcot-Marie-Tooth disease in acute lymphoblastic leukemia: a pediatric oncology group study. J Pediatr Hematol Oncol. 2003;25:316–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Paulson JC, McClure WO. Inhibition of axoplasmic transport by colchicine, podophyllotoxin, and vinblastine: an effect on microtubules. Ann N Y Acad Sci. 1975;253:517–27.PubMedCrossRefGoogle Scholar
  23. 23.
    Sanderson PA, Kuwabara T, Cogan DG. Optic neuropathy presumably caused by vincristine therapy. Am J Ophthalmol. 1976;81:146–50.PubMedCrossRefGoogle Scholar
  24. 24.
    Kalcioglu MT, et al. Bilateral hearing loss during vincristine therapy: a case report. J Chemother. 2003;15:290–2.PubMedCrossRefGoogle Scholar
  25. 25.
    Moudgil SS, Riggs JE. Fulminant peripheral neuropathy with severe quadriparesis associated with vincristine therapy. Ann Pharmacother. 2000;34:1136–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Postma TJ, Vermorken JB, Liefting AJ, et al. Paclitaxel-induced neuropathy. Ann Oncol. 1995;6:489–94.PubMedCrossRefGoogle Scholar
  27. 27.
    Wefel JS, Schagen SB. Chemotherapy-related cognitive dysfunction. Curr Neurol Neurosci Rep. 2012;12:267–75.PubMedCrossRefGoogle Scholar
  28. 28.
    Dietrich J, Prust M, Kaiser J. Chemotherapy, cognitive impairment and hippocampal toxicity: Review. Neuroscience. 2015;309:224–32.PubMedCrossRefGoogle Scholar
  29. 29.
    Collins B, MacKenzie J, Tasca GA, Scherling C, Smith A. Cognitive effects of chemotherapy in breast cancer patients: a dose-response study. Psychooncology. 2013;22:1517–27.PubMedCrossRefGoogle Scholar
  30. 30.
    Dietrich J, Monje M, Wefel J, Meyers C. Clinical patterns and biological correlates of cognitive dysfunction associated with cancer therapy. Oncologist. 2008;13:1285–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Deng W, Almone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci. 2010;11:339–50.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Spalding KL, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153:1219–27.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Seigers R, et al. Inhibition of hippocampal cell proliferation by methotrexate in rats is not potentiated by the presence of a tumor. Brain Res Bull. 2010;81:472–276.PubMedCrossRefGoogle Scholar
  34. 34.
    Christie LA, Acharya MM, Parihar VK, Nguyen A, Martirosian V, Limoli CL. Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin Cancer Res. 2012;18:1954–65.PubMedCrossRefGoogle Scholar
  35. 35.
    Nokia MS, Anderson ML, Shors TJ. Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain. Eur J Neurosci. 2012;36:3521–30.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Walker EA, Foley JJ, Clark-Vetri R, Raffa RB. Effects of repeated administration of chemotherapeutic agents tamoxifen, methotrexate, and 5-fluorouracil on the acquisition and retention of a learned response in mice. Psychopharmacology. 2011;217:539–48.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Yang M. Neurotoxicity of methotrexate to hippocampal cells in vivo and in vitro. Biochem Pharmacol. 2011;82:72–80.PubMedCrossRefGoogle Scholar
  38. 38.
    De Ruiter MB, et al. Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Hum Brain Mapp. 2011;32:1206–19.PubMedCrossRefGoogle Scholar
  39. 39.
    Higgins AY, O’Halloran TD, Chang JD. Chemotherapy-induced cardiomyopathy. Heart Fail Rev. 2015;20:721–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;11:2869–79.CrossRefGoogle Scholar
  41. 41.
    Todaro MC, et al. Cardioncology: state of the heart. Int J Cardiol. 2013;168:680–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Seidman A. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20:1215–21.PubMedCrossRefGoogle Scholar
  43. 43.
    Khouri MG, et al. Cancer therapy-induced cardiac toxicity in early breast cancer: addressing the unresolved issues. Circulation. 2012;126:2749–63.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Morandi P, et al. Serum cardiac troponin I levels and ECG/Echo monitoring in breast cancer patients undergoing high-dose (7g/m(2)) cyclophosphamide. Bone Marrow Transplant. 2002;28:277–82.CrossRefGoogle Scholar
  45. 45.
    Hunt SA, American College of Cardiology F, American Heart A. 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines developed in collaboration with the international society for heart and lung transplantation. J Am Coll Cardiol. 2009;53:e1–e90.CrossRefGoogle Scholar
  46. 46.
    Yoon GF, et al. Left ventricular dysfunction in patients receiving cardiotoxic cancer therapies: are clinicians responding optimally? J Am Coll Cardiol. 2010;56:1644–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Meador M, Floyd J, Perry MC. Pulmonary toxicity of chemotherapy. Semin Oncol. 2006;33:98–105.CrossRefGoogle Scholar
  48. 48.
    Fennell DA, Rudd RM. Pulmonary toxicity and cancer treatment. Hosp Med. 2004;65:462–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Sleijfer S. Bleomycin-induced pneumonitis. Chest. 2001;120:617–24.CrossRefGoogle Scholar
  50. 50.
    Kreisman H, Wolkove N. Pulmonary toxicity of antineoplastic therapy. Semin Oncol. 1992;19:508–20.PubMedGoogle Scholar
  51. 51.
    Rowinsky EK, Donehower RC. Paclitaxel (Taxol). N Engl J Med. 1995;332:1004–14.PubMedCrossRefGoogle Scholar
  52. 52.
    O’Meara WP, Thiringer JK, Johnstone PA. Follow-up of head and neck cancer patients post-radiotherapy. Radiother Oncol. 2003;66:323–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Tannock IF. Combined modality treatment with radiotherapy and chemotherapy. Radiother Oncol. 1989;16:83–101.PubMedCrossRefGoogle Scholar
  54. 54.
    Mariotto AB, Yabroff KR, Shao Y, Feuer EJ, Brown MI. Projections of the cost of cancer care in the United States: 2010–2020. J Natl Cancer Inst. 2011;103:117–28.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hauer-Jensen M, Fink LM, Wang J. Radiation injury and the protein C pathway. Crit Care Med. 2004;32:S325–30.PubMedCrossRefGoogle Scholar
  56. 56.
    Stubblefield MD. Radiation fibrosis syndrome: neuromuscular and musculoskeletal complications in cancer survivors. PMR. 2011;3:1041–54.CrossRefGoogle Scholar
  57. 57.
    Leduc O, Klein P, Demaret P, et al. Dynamic pressure variation under bandages with different stiffness. In: Vascular medicine: proceedings. Amsterdam: Elsevier Science; 1993. p. 465–8.Google Scholar
  58. 58.
    Liu AK, Macy ME, Foreman NK. Bevacizumab as therapy for radiation necrosis in four children with pontine gliomas. Int J Radiat Oncol Biol Phys. 2009;75:1148–54.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Marks JE, Wong J. The risk of cerebral radionecrosis in relation to dose, time, and fractionation: a follow-up study. Prog Exp Tumor Res. 1985;29:210–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Moretti M, Torre P, Antonello RM, et al. Neuropsychological evaluation of late-onset post-radiotherapy encephalopathy: a comparison with vascular dementia. J Neurol Sci. 2005;229–230:195–200.PubMedCrossRefGoogle Scholar
  61. 61.
    Jr C, Shapiro CL, Ng A, et al. American society of clinical oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J Clin Oncol. 2007;25:3991–4008.CrossRefGoogle Scholar
  62. 62.
    Dropcho EJ. Neurotoxicity of radiation therapy. Neurol Clin. 2010;28:217–324.PubMedCrossRefGoogle Scholar
  63. 63.
    Libschitz HI, DuBrow RA, Loyer EM, Charnsangavej C. Radiation change in normal organs: an overview of body imaging. Eur Radiol. 1996;6:786–95.Google Scholar
  64. 64.
    Johansson S, Svensson H, Denekamp J. Timescale of evolution of late radiation injury after postoperative radiotherapy of breast cancer patients. Int J Radiat Oncol Biol Phys. 2000;48:754–0.CrossRefGoogle Scholar
  65. 65.
    Johansson S, Svensson H, Denekamp J. Dose response and latency for radiation-induced fibrosis, edema, and neuropathy in breast cancer patients. Int J Radiat Oncol Biol Phys. 2000;52:1207–19.CrossRefGoogle Scholar
  66. 66.
    Zackrisson B, Mercke C, Strander H, Wennerberg J, Cavalin-Stahl E. A systematic overview of radiation therapy effects in head and neck cancer. Acta Oncol. 2003;42:443–61.PubMedCrossRefGoogle Scholar
  67. 67.
    Fajardo LF. The pathology of ionizing radiation as defined by morphologic patterns. Acta Oncol. 2005;44:13–22.PubMedCrossRefGoogle Scholar
  68. 68.
    Gillette EL, LaRue SM, Gillette SM. Normal tissue tolerance and management of radiation injury. Semin Vet Med Surg. 1995;10:209–13.Google Scholar
  69. 69.
    Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010;9:807–19.PubMedCrossRefGoogle Scholar
  70. 70.
    Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev. 2009;60:214–25.PubMedCrossRefGoogle Scholar
  71. 71.
    Chan CK, Lee HY, Choi WC, Cho JY, Lee SH. Cervical cord compression presenting with sciatica-like leg pain. Eur Spine J. 2011;20:S217–21.PubMedCrossRefGoogle Scholar
  72. 72.
    Jaeckle KA. Neurologic manifestations of neoplastic and radiation-induced plexopathies. Semin Neurol. 2010;30:254–62.CrossRefGoogle Scholar
  73. 73.
    Hsia AW, Katz JS, Hancock SL, Peterson K. Post-irradiation polyradiculopathy mimics leptomeningeal tumor on MRI. Neurology. 2003;60:1694–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Miller TM, Layzer RB. Muscle cramps. Muscle Nerve. 2005;32:431–42.PubMedCrossRefGoogle Scholar
  75. 75.
    Stubblefield MD, Levine A, Custodio CM, Fitzpatrick T. The role of botulinum toxin type A in the radiation fibrosis syndrome: a preliminary report. Arch Phys Med Rehabil. 2008;89:417–21.CrossRefGoogle Scholar
  76. 76.
    Shah JP, Danoff JV, Desai MJ, et al. Biochemicals associated with pain and inflammation are elevated in sites near to and remote from active myofascial trigger points. Arch Phys Med Rehabil. 2008;89:16–23.PubMedCrossRefGoogle Scholar
  77. 77.
    Engleman MA, Woloschak G, Small W Jr. Radiation-induced skeletal injury. Cancer Treat Res. 2006;128:155–69.PubMedCrossRefGoogle Scholar
  78. 78.
    Spoudes HA. Growth and endocrine function after chemotherapy and radiotherapy in childhood. Eur J Cancer. 2002;38:1748–59.CrossRefGoogle Scholar
  79. 79.
    Stava CJ, Jimenez C, Hu MI, Vassilopoulou-Sellin R. Skeletal sequelae of cancer and cancer treatment. J Cancer Surviv. 2009;3:75–88.PubMedCrossRefGoogle Scholar
  80. 80.
    Appels C, Geokoop R. Dropped-head syndrome due to high-dose irradiation. J Rheumatol. 2009;34:666–9.Google Scholar
  81. 81.
    Rowin J, Cheng G, Lewis SL, Meriggioli MN. Late appearance of dropped-head syndrome after radiotherapy for Hodgkin’s disease. Muscle Nerve. 2006;34:666–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Stubblefield MD, Burstein HJ, Burton AW, et al. NCCN task force report: management of neuropathy in cancer. J Natl Compr Cancer Netw. 2009;7:S1–S26.CrossRefGoogle Scholar
  83. 83.
    Herrera JE, Stubblefield MD. Rotator cuff tendonitis in lymphedema: a retrospective case series. Arch Phys Med Rehabil. 2004;85:1939–42.PubMedCrossRefGoogle Scholar
  84. 84.
    Dijkstra PU, Kalk WW, Roodenburg JL. Trismus in head and neck oncology: a systematic review. Oral Oncol. 2004;40:879–89.PubMedCrossRefGoogle Scholar
  85. 85.
    Ichimura K, Tanaka T. Trismus in patients with malignant tumours in the head and neck. J Laryngol Otol. 1993;107:1017–20.PubMedCrossRefGoogle Scholar
  86. 86.
    Buchbinder D, Currivan RB, Kaplan AJ, Urken ML. Mobilization regimens for the prevention of jaw hypomobility in irradiated patients: an analysis and comparison of two techniques. Med Oral Patol Oral Cir Bucal. 2007;43:389–94.Google Scholar
  87. 87.
    Huang ME, Cifu DX, Keyser-Marcus L. Functional outcomes after brain tumor and acute stroke: a comparative analysis. Arch Phys Med Rehabil. 1998;79(11):1386–90.PubMedCrossRefGoogle Scholar
  88. 88.
    O’Dell MW, Barr K, Spanier D, Warnick RE. Functional outcomes of inpatient rehabilitation in persons with brain tumors. Arch Phys Med Rehabil. 1998;79:1530–4.PubMedCrossRefGoogle Scholar
  89. 89.
    Cuccurullo SJ. Physical medicine and rehabilitation board review. 3rd ed. New York: Demos Medical; 2014.Google Scholar
  90. 90.
    Casley-Smith JR. The pathophysiology of lymphedema and the action of benzopyrones in reducing it. Lymphology. 1988;21:190–4.PubMedGoogle Scholar
  91. 91.
    Casley-Smith JR. Modern treatment for lymphedema. 5th ed. Malvern: The Lymphoedema Association of Australia Inc; 1997.Google Scholar
  92. 92.
    Wood TJ, Racano A, Yeung H, et al. Surgical management of bone metastases: quality of evidence and systematic review. Ann Surg Oncol. 2014;21:4081–9.PubMedCrossRefGoogle Scholar
  93. 93.
    McKinley WO, Huang ME, Tewksbury MA. Neoplastic vs. traumatic spinal cord injury: an inpatient rehabilitation comparison. Am J Phys Phys Med Rehabil. 2000;79:138–44.CrossRefGoogle Scholar
  94. 94.
    Silver JK. Cancer rehabilitation and prehabilitation may reduce disability and early retirement. Cancer. 2014;120:2072–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Huang GH, Ismail H, Murnane A, Kim P, Riedel B. Structures exercise program prior to major cancer surgery improves cardiopulmonary fitness: a retrospective cohort study. Support Care Cancer. 2016;24(5):2277–85. Epub 2015 Nov 21PubMedCrossRefGoogle Scholar
  96. 96.
    Tsimopoulou I, Pasquali S, Howard R, Dasai A, Gourevitch D, Tolosa I, Vohra R. Psychological prehabilitation before cancer surgery: a systematic review. Ann Surg Oncol. 2015;22(13):4117–23.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ameet Nagpal
    • 1
    • 2
    Email author
  • Jacob Fehl
    • 3
  • Brittany Bickelhaupt
    • 4
  • Maxim S. Eckmann
    • 1
    • 2
  • Brian Boies
    • 1
    • 2
  • Jon Benfield
    • 5
  1. 1.University of Texas Health Science Center at San Antonio (UTHSCSA), UT Medicine Pain Consultants, Department of AnesthesiologySan AntonioUSA
  2. 2.University of Texas Health Science Center at San Antonio (UTHSCSA), Department of AnesthesiologySan AntonioUSA
  3. 3.Kansas City VA Medical CenterKansas CityUSA
  4. 4.University of Texas Health Science Center at San Antonio (UTHSCSA), Department of Physical Medicine and RehabilitationSan AntonioUSA
  5. 5.South Texas Spinal ClinicSan AntonioUSA

Personalised recommendations