Biosimilars pp 675-691 | Cite as

Immunogenicity and Adverse Reactions to Biosimilar Erythropoietin Products in Thailand: The Significance of Science and Quality Driven Process for Approval

  • Kearkiat PraditpornsilpaEmail author
  • Anunchai Assawamakin
  • Kriang Tungsanga
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 34)


The immunogenicity of recombinant human erythropoietin (r-HuEpo) by subcutaneous exposure has been well described. This adverse immunological effect causes anti-r-HuEpo-associated pure red cell aplasia (PRCA). There have been increasing cases of anti-r-HuEpo-associated PRCA after subcutaneous exposure in Thailand. The casual mechanism of this disease may relate to HLA immunogenic, protein aggregation, stability during storage and handling of drug products, formulation and drug product quality.

The r-HuEpos have been licensed for treatment of renal anemia in Thailand include innovator products and more than 20 biosimilar products. Lack of a scientific product characterization and quality driven process to approve such biosimilars may lead to different immunogenicity and safety profiles. The Prospective Immunogenicity Surveillance Registry of r-HuEpo with Subcutaneous Exposure in Thailand estimated the incidence of anti-r-HuEpo associated PRCA among subjects who had subcutaneous exposure to any r-HuEpo product currently available in Thailand, addressed the risk of anti-r-HuEpo-associated PRCA, and the association of product qualities towards adverse immunogenicity.

The experiences of biosimilar r-HuEpo in Thailand and anti-rHuEpo associated PRCA in Thailand illustrated the need to evaluate biosimilar product on a case-by case basis. Considering patients ‘safety as the first priority, the approval process for biosimilar drug licensing should be designed to assess quality, characterization and impurity profile and comprehensive evaluation of the non-clinical and clinical aspects. Pharmacovigilance could be the final step to narrow the gap between quality and safety and can be assessed in totality with cost-effectiveness and patient benefit that such drug offer.


Immunogenicity of recombinant human erythropoietin (r-HuEpo) Renal anemia Pure red cell aplasia (PRCA) 


  1. Bennett CL, Luminari S, Nissenson AR, etal. Pure red-cell aplasia and epoetin therapy. New Engl J Med. 2004;351:1403–8.CrossRefGoogle Scholar
  2. Blackstone E, Fuhr J. The economics of biosimilars. Am Health Drug Benefits. 2013;6(8):469–78.PubMedPubMedCentralGoogle Scholar
  3. Boven K, Stryker S, Knight J, Thomas A, van Regenmortel M, Kemeny DM, Power D, Rossert J, Casadevall N. The increased incidence of pure red cell aplasia with an Eprex formulation in uncoated rubber stopper syringes. Kidney Int. 2005;67(6):2346–53.CrossRefGoogle Scholar
  4. Bracewell DG, Francis R, Smales CM. The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk-based management for their control. Biotechnol Bioeng. 2015;112:1727–37.CrossRefGoogle Scholar
  5. Casadevall N. Antibodies against r-HuEPO: native or recombinant. Nephrol Dial Transplant. 2002;17(Suppl 5):42–7.CrossRefGoogle Scholar
  6. Casadevall N, Nataf J, Viron B, etal. Pure red cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. New Engl J Med. 2002;346:469–75.CrossRefGoogle Scholar
  7. Casadevall N, Thorpe R, Schellekens H. Biosimilars need comparative clinical data. Kidney Int. 2011;80:553.CrossRefGoogle Scholar
  8. Chirino AJ, Mire-Sluis A. Characterizing biological products and assessing comparability following manufacturing changes. Nat Biotechnol. 2004;22(11):1383–91.CrossRefGoogle Scholar
  9. Combe C, Tredree RL, Schellekens H. Biosimilar epoetins: an analysis based on recently implemented European medicines evaluation agency guidelines on comparability of biopharmaceutical proteins. Pharmacotherapy. 2005;25:954–62.CrossRefGoogle Scholar
  10. Deechongkit S, Aoki KH, Park SS, Kerwin BA. Biophysical comparability of the same protein from different manufacturers: a case study using Epoetin alfa from Epogen® and Eprex®. J Pharm Sci. 2006;95:1931–43.CrossRefGoogle Scholar
  11. Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv. 2009;27:297–306.CrossRefGoogle Scholar
  12. Dorey E. How the biologics landscape is evolving. Clin Pharm. 2014;6(9):1–6.Google Scholar
  13. Dzieciatkowska M, Hill R, Hansen KC. GeLC-MS/MS analysis of complex protein mixtures. Methods Mol Biol. 2014;1156:53–66.CrossRefGoogle Scholar
  14. Erslev AJ. Pure red cell aplasia. In: Beutler E, Lichtman MA, Coller BS, Kipps TJ, editors. Williams hematology. New York: McGraw-Hill; 1995. p. 448.Google Scholar
  15. FDA Briefing Document. Onchologic Drugs Advisory Committee Meeting, May 25, 2017, BLA 125545 “Epoetin Hospira”, a proposed biosimilar to Epogen/Procrit 9epoetin alfa). Applicant: Hospira Inc., Pfizer Company.Google Scholar
  16. Fijal B, Ricci D, Vercammen E, Palmer PA, Fotiou F, Fife D, Lindholm A, Broderick E, Francke S, Wu X, Colaianne J, Cohen N. Case-control study of the association between select HLA genes and anti-erythropoietin antibody-positive pure red-cell aplasia. Pharmacogenomics. 2008;9(2):157–67.CrossRefGoogle Scholar
  17. Fujimori K, Lee H, Phillips J, Nashed-Samuel Y. Development of an inductively coupled plasma mass spectrometry method for quantification of extracted tungsten from glass prefilled syringes used as a primary packaging for pharmaceutical and therapeutic protein products. PDA J Pharm Sci Technol. 2013;67(6):670–9.CrossRefGoogle Scholar
  18. Haag-Weber M, Eckardt KU, Hörl WH, Roger SD, Vetter A, Roth K. Safety, immunogenicity and efficacy of subcutaneous biosimilar epoetin-α (HX575) in non-dialysis patients with renal anemia: a multi-center, randomized, double-blind study. Clin Nephrol. 2012;77(1):8–17.CrossRefGoogle Scholar
  19. Halim LA, Brinks V, Jiskoot W, Romeijn S, Praditpornsilpa K, Assawamakin A, Schellekens H. How bio-questionable are the different recombinant human erythropoietin copy products in Thailand? Pharm Res. 2014;31(5):1210–8.CrossRefGoogle Scholar
  20. Heavner GA, Arakawa T, Philo JS, Calmann MA, LaBrenz S. Protein isolated from biopharmaceutical formulations cannot be used for comparative studies: follow-up to “a case study using Epoetin Alfa from Epogen and EPREX”. J Pharm Sci. 2007;96:3214–25.CrossRefGoogle Scholar
  21. Hung S, Chung W, Liou L, etal. HLA-B * 5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A. 2005;102:4134–9.CrossRefGoogle Scholar
  22. Jenke D. Extractable/leachable substances from plastic materials used as pharmaceutical product containers/devices. PDA J Pharm Sci Technol. 2002;56:332–71.PubMedGoogle Scholar
  23. Joung J, Robertson JS, Griffiths E, WHO Informal Consultation Group, etal. WHO informal consultation on regulatory evaluation of therapeutic biological medicinal products held at WHO Headquarters, Geneva, 19–20 April 2007. Biologicals. 2008;36:269–76.CrossRefGoogle Scholar
  24. Lacombe C. Resistance to erythropoietin. New Engl J Med. 1996;334:660–2.CrossRefGoogle Scholar
  25. Locatelli F, Del Vecchio L, Pozzoni P. Pure red-cell aplasia ‘epidemic’– mystery completely revealed? Perit Dial Int. 2007;27(Suppl 2):S303–7.PubMedGoogle Scholar
  26. Macdougall IC, Roger SD, de Francisco A, etal. Antibody-mediated pure red cell aplasia in chronic kidney disease patients receiving erythropoiesis-stimulating agents: new insights. Kidney Int. 2012;81:727–32.CrossRefGoogle Scholar
  27. Macdougall IC, Casadevall N, Locatelli F, Combe C, London GM, Di Paolo S, Kribben A, Fliser D, Messner H, McNeil J, Stevens P, Santoro A, De Francisco ALM, Percheson P, Potamianou A, Foucher A, Fife D, Mérit V, Vercammen E, PRIMS Study Group. Incidence of erythropoietin antibody-mediated pure red cell aplasia: the prospective immunogenicity surveillance registry (PRIMS). Nephrol Dial Transplant. 2015;30(3):451–60.CrossRefGoogle Scholar
  28. Mallal S, Nolan C, Witt C, etal. Association between presence of HLA-B * 5701, HLA-DR-7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359:727–32.CrossRefGoogle Scholar
  29. Mandreoli M, Finelli C, Lopez A, Ascani S, Vianelli N, Baccarani M, Santoro A. Successful resumption of epoetin alfa after rituximab treatment in a patient with pure red cell aplasia. Am J Kidney Dis. 2004;44(4):757–61.CrossRefGoogle Scholar
  30. Matsuhashi N, Yoshioka T. Endotoxin-free dialysate improves response to erythropoietin in hemodialysis patients. Nephron. 2002;92:601–4.CrossRefGoogle Scholar
  31. McLeod D, Shreeve M, Axeirad A. Improved plasma culture system for production of erythrocytic colonies in vitro: quantitative assay method for CFU-E. Blood. 1974;44:517–34.PubMedGoogle Scholar
  32. Moussa EM, etal. Immunogenicity of therapeutic protein aggregates. J Pharm Sci. 2016;105: 417–30.CrossRefGoogle Scholar
  33. Park SS, Park J, Ko J, Chen L, Meriage D, Crouse-Zeineddini J, Wong W, Kerwin BA. Biochemical assessment of erythropoietin products from Asia versus US Epoetin Alfa manufactured by Amgen. J Pharm Sci. 2009;98:1688–99.CrossRefGoogle Scholar
  34. Peces R, Torre M, Alcazar R, Urra J. Antibodies against recombinant human erythropoietin in a patient with erythropoietin resistance anemia. New Engl J Med. 1996;3356:523–4.CrossRefGoogle Scholar
  35. Porter S. Human immune response to recombinant human proteins. J Pharm Sci. 2001;90:1–11.CrossRefGoogle Scholar
  36. Prabhakar SS, Muhlfelder T. Antibodies to recombinant human erythropoietin causing pure red cell aplasia. Clin Nephrol. 1997;47:331–5.PubMedGoogle Scholar
  37. Praditpornsilpa K, Buranasot S, Bhokaisuwan N, Avihingsanon Y, Pisitkul T, Kansanabuch T, Eiam-Ong S, Chusil S, Intarakumtornchai T, Tungsanga K. Recovery from anti-recombinant-human-erythropoietin associated pure red cell aplasia in end-stage renal disease patients after renal transplantation. Nephrol Dial Transplant. 2005;20(3):626–30.CrossRefGoogle Scholar
  38. Praditpornsilpa K, Kupatawintu P, Mongkonsritagoon W, Supasyndh O, Jootar S, Intarakumthornchai T, Pongskul C, Prasithsirikul W, Achavanuntakul B, Ruangkarnchanasetr P, Laohavinij S, Eiam-Ong S. The association of anti-r-HuEpo-associated pure red cell aplasia with HLA-DRB1∗09-DQB1∗0309. Nephrol Dial Transplant. 2009;24:1545–9.CrossRefGoogle Scholar
  39. Praditpornsilpa K, Tiranathanagul K, Kupatawintu P, Jootar S, Intragumtornchai T, Tungsanga K, Teerapornlertratt T, Lumlertkul D, Townamchai N, Susantitaphong P, Katavetin P, Kanjanabuch T, Avihingsanon Y, Eiam-Ong S. Biosimilar recombinant human erythropoietin induces the production of neutralizing antibodies. Kidney Int. 2011;80(1):88–92.CrossRefGoogle Scholar
  40. Praditpornsilpa K, Tiranathanakul K, Jootar S, Tungsanga K, Eiam-Ong S. Rechallenge with intravenous recombinant human erythropoietin can be successful following the treatment of anti-recombinant erythropoietin associated pure red cell aplasia. Clin Nephrol. 2014;81(5):355–8.CrossRefGoogle Scholar
  41. Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol. 2005;5(8):617–28.CrossRefGoogle Scholar
  42. Ryan MH, Heavner GA, Brigham-Burke M, etal. An in vivo model to assess factors that may stimulate the generation of an immune reaction to erythropoietin. Int Immunopharmacol. 2006;6:647–55.CrossRefGoogle Scholar
  43. Sahoo N, Choudhury K, Manchikanti P. Manufacturing of biodrugs: need for harmonization in regulatory standards. BioDrugs. 2009;23(4):217–29.CrossRefGoogle Scholar
  44. Schellekens H. When biotech proteins go off-patent. Trends Biotechnol. 2004;22:406–41.CrossRefGoogle Scholar
  45. Seidl A, Hainzl O, Richter M, Fischer R, Böhm S, Deutel B, Hartinger M, Windisch J, Casadevall N, London GM, Macdougall I. Tungsten-induced denaturation and aggregation of epoetin Alfa during primary packaging as a cause of immunogenicity. Pharm Res. 2012;29:1454–67.CrossRefGoogle Scholar
  46. Shimizu H, Saitoh T, Ota F, Jimbo T, Tsukada Y, Murakami H, Nojima Y. Pure red cell aplasia induced only by intravenous administration of recombinant human erythropoietin. Acta Haematol. 2011;126(2):114–8.CrossRefGoogle Scholar
  47. Solá RJ, Griebenow K. Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci. 2009;98:1223–45.CrossRefGoogle Scholar
  48. Thanaphollert P, Tungsanga K. Towards regulation of similar biotherapeutic products: Thailand’s perspective. Biologicals. 2011;39:346–7.CrossRefGoogle Scholar
  49. Treerutkuarkul A. Thailand: health care for all, at a price. Bull World Health Organ. 2010;88(2):84–5.CrossRefGoogle Scholar
  50. Urra J, Torre M, Alcaza P, Peces R. Rapid method for detection of anti-recombinant human erythropoietin antibodies as a new form of erythropoietin resistance. Clin Chem. 1997;43: 848–9.PubMedGoogle Scholar
  51. Walsh G. Biopharmaceutical benchmarks 2014. Nat Biotechnol. 2014;32(10):992–1000.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Kearkiat Praditpornsilpa
    • 1
    Email author
  • Anunchai Assawamakin
    • 2
  • Kriang Tungsanga
    • 1
  1. 1.Division of Nephrology, Department of Medicine, Faculty of MedicineChulalongkorn University, King Chulalongkorn Memorial HospitalBangkokThailand
  2. 2.Department of Pharmacology, Faculty of Pharmaceutical ScienceMahidol UniversityBangkokThailand

Personalised recommendations