Advertisement

Performance of Elbrus Processors for Computational Materials Science Codes and Fast Fourier Transform

  • Vladimir Stegailov
  • Alexey TimofeevEmail author
  • Denis Dergunov
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 910)

Abstract

Modern Elbrus-4S and Elbrus-8S processors provide a level of floating-point performance close to that of widespread x86_64 CPUs that are predominantly used in high-performance computing (HPC). The uniqueness of the software ecosystem of Elbrus processors requires special attention in the case of their deployment for execution of mainstream computational codes. In this paper, we consider the performance of one widely used code for computational materials science (VASP), as well as FFT libraries. The results for the Elbrus processors are embedded into the context of performance of modern x86_64 CPUs.

Keywords

Elbrus architecture VASP Fourier transform 

References

  1. 1.
    Kozhin, A.S., et al.: The 5th generation 28nm 8-core VLIW Elbrus-8C processor architecture. In: Proceedings - 2016 International Conference on Engineering and Telecommunication, EnT 2016, pp. 86–90 (2017).  https://doi.org/10.1109/EnT.2016.25
  2. 2.
    Tyutlyaeva, E., Konyukhov, S., Odintsov, I., Moskovsky, A.: The Elbrus platform feasibility assessment for high-performance computations. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2016. CCIS, vol. 687, pp. 333–344. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-319-55669-7_26CrossRefGoogle Scholar
  3. 3.
    Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).  https://doi.org/10.1103/PhysRevB.47.558CrossRefGoogle Scholar
  4. 4.
    Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).  https://doi.org/10.1103/PhysRevB.49.14251CrossRefGoogle Scholar
  5. 5.
    Kresse, G., Furthmuller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996).  https://doi.org/10.1016/0927-0256(96)00008-0CrossRefGoogle Scholar
  6. 6.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).  https://doi.org/10.1103/PhysRevB.54.11169CrossRefGoogle Scholar
  7. 7.
    Stegailov, V.V., Orekhov, N.D., Smirnov, G.S.: HPC hardware efficiency for quantum and classical molecular dynamics. In: Malyshkin, V. (ed.) Parallel Computing Technologies. LNCS, vol. 9251, pp. 469–473. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-319-21909-7_45CrossRefGoogle Scholar
  8. 8.
    Aristova, N.M., Belov, G.V.: Refining the thermodynamic functions of scandium triflouride SCF3 in the condensed state. Russ. J. Phys. Chem. A 90(3), 700–703 (2016).  https://doi.org/10.1134/S0036024416030031CrossRefGoogle Scholar
  9. 9.
    Kochikov, I.V., Kovtun, D.M., Tarasov, Y.I.: Electron diffraction analysis for the molecules with degenerate large amplitude motions: intramolecular dynamics in arsenic pentafluoride. J. Mol. Struct. 1132, 139–148 (2017).  https://doi.org/10.1016/j.molstruc.2016.09.064CrossRefGoogle Scholar
  10. 10.
    Minakov, D.V., Levashov, P.R.: Melting curves of metals with excited electrons in the quasiharmonic approximation. Phys. Rev. B 92, 224102 (2015).  https://doi.org/10.1103/PhysRevB.92.224102CrossRefGoogle Scholar
  11. 11.
    Minakov, D., Levashov, P.: Thermodynamic properties of LiD under compression with different pseudopotentials for lithium. Comput. Mater. Sci. 114, 128–134 (2016).  https://doi.org/10.1016/j.commatsci.2015.12.008CrossRefGoogle Scholar
  12. 12.
    Bethune, I.: Ab initio molecular dynamics. Introduction to Molecular Dynamics on ARCHER (2015)Google Scholar
  13. 13.
    Hutchinson, M.: VASP on GPUs. When and how. GPU technology theater, SC15 (2015)Google Scholar
  14. 14.
    Zhao, Z., Marsman, M.: Estimating the performance impact of the MCDRAM on KNL using dual-socket Ivy Bridge nodes on Cray XC30. In: 2016 Proceedings of the Cray User Group (2016)Google Scholar
  15. 15.
    Wende, F., Marsman, M., Steinke, T.: On enhancing 3D-FFT performance in VASP. In: CUG Proceedings, p. 9 (2016)Google Scholar
  16. 16.
    Burtscher, M., Kim, B.D., Diamond, J., McCalpin, J., Koesterke, L., Browne, J.: Perfexpert: an easy-to-use performance diagnosis tool for HPC applications. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2010, pp. 1–11. IEEE Computer Society, Washington (2010).  https://doi.org/10.1109/SC.2010.41
  17. 17.
    Rane, A., Browne, J.: Enhancing performance optimization of multicore/multichip nodes with data structure metrics. ACM Trans. Parallel Comput. 1(1), 3:1–3:20 (2014).  https://doi.org/10.1145/2588788CrossRefGoogle Scholar
  18. 18.
    Mantovani, F., Calore, E.: Performance and power analysis of HPC workloads on heterogeneous multi-node clusters. J. Low Power Electron. Appl. 8(2), 13 (2018)CrossRefGoogle Scholar
  19. 19.
    Stanisic, L., Mello Schnorr, L.C., Degomme, A., Heinrich, F.C., Legrand, A., Videau, B.: Characterizing the performance of modern architectures through opaque benchmarks: pitfalls learned the hard way. In: IPDPS 2017 – 31st IEEE International Parallel and Distributed Processing Symposium (RepPar Workshop), Orlando, United States, pp. 1588–1597 (2017)Google Scholar
  20. 20.
    Baker, M.: A study of improving the parallel performance of VASP. Ph.D. thesis, East Tennessee State University (2010)Google Scholar
  21. 21.
    Stegailov, V., Vecher, V.: Efficiency analysis of Intel and AMD x86\(\_64\) architectures for ab initio calculations: a case study of VASP. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017. CCIS, vol. 793, pp. 430–441. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-71255-0_35CrossRefGoogle Scholar
  22. 22.
    Stegailov, V., Vecher, V.: Efficiency analysis of Intel, AMD and Nvidia 64-bit hardware for memory-bound problems: a case study of ab initio calculations with VASP. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.) PPAM 2017. LNCS, vol. 10778, pp. 81–90. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78054-2_8CrossRefGoogle Scholar
  23. 23.
    Nikolskiy, V.P., Stegailov, V.V., Vecher, V.S.: Efficiency of the Tegra K1 and X1 systems-on-chip for classical molecular dynamics. In: 2016 International Conference on High Performance Computing Simulation (HPCS), pp. 682–689 (2016).  https://doi.org/10.1109/HPCSim.2016.7568401

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Vladimir Stegailov
    • 1
    • 2
  • Alexey Timofeev
    • 1
    • 2
    Email author
  • Denis Dergunov
    • 1
    • 2
  1. 1.Joint Institute for High Temperatures of the Russian Academy of SciencesMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations