Advertisement

Simple Games Versus Weighted Voting Games

  • Frits Hof
  • Walter Kern
  • Sascha Kurz
  • Daniël PaulusmaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11059)

Abstract

A simple game (Nv) is given by a set N of n players and a partition of \(2^N\) into a set \(\mathcal {L}\) of losing coalitions L with value \(v(L)=0\) that is closed under taking subsets and a set \(\mathcal {W}\) of winning coalitions W with \(v(W)=1\). Simple games with \(\alpha = \min _{p\ge 0}\max _{W\in \mathcal{W},L\in \mathcal{L}} \frac{p(L)}{p(W)}<1\) are exactly the weighted voting games. Freixas and Kurz (IJGT, 2014) conjectured that \(\alpha \le \frac{1}{4}n\) for every simple game (Nv). We confirm this conjecture for two complementary cases, namely when all minimal winning coalitions have size 3 and when no minimal winning coalition has size 3. As a general bound we prove that \(\alpha \le \frac{2}{7}n\) for every simple game (Nv). For complete simple games, Freixas and Kurz conjectured that \(\alpha =O(\sqrt{n})\). We prove this conjecture up to a \(\ln n\) factor. We also prove that for graphic simple games, that is, simple games in which every minimal winning coalition has size 2, computing \(\alpha \) is NP-hard, but polynomial-time solvable if the underlying graph is bipartite. Moreover, we show that for every graphic simple game, deciding if \(\alpha <a\) is polynomial-time solvable for every fixed \(a>0\).

Keywords

Weighted Voting Game Complete Simple Games Coalition Freixas Matching Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The second and fourth author thank Péter Biró and Hajo Broersma for fruitful discussions on the topic of the paper.

References

  1. 1.
    Pashkovich, K.: On critical threshold value for simple games. arXiv:1806.03170v2, 11 June 2018
  2. 2.
    Balas, E., Yu, C.S.: On graphs with polynomially solvable maximum-weight clique problem. Networks 19(2), 247–253 (1989)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bilbao, J.M., García, J.R.F., Jiménez, N., López, J.J.: Voting power in the European Union enlargement. Eur. J. Oper. Res. 143(1), 181–196 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Biro, P., Kern, W., Paulusma, D.: Computing solutions for matching games. Int. J. Game Theory 41, 75–90 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bock, A., Chandrasekaran, K., Könemann, J., Peis, B., Sanitá, L.: Finding small stabilizers for unstable graphs. Math. Program. 154, 173–196 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brandstaett, A., Mosca, R.: Maximum weight independent set in \(l\)claw-free graphs in polynomial time. Discrete Appl. Math. 237, 57–64 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational Aspects of Cooperative Game Theory. Morgan and Claypool Publishers (2011)Google Scholar
  8. 8.
    Deineko, V.G., Woeginger, G.J.: On the dimension of simple monotonic games. Eur. J. Oper. Res. 170(1), 315–318 (2006)CrossRefGoogle Scholar
  9. 9.
    Elkind, E., Chalkiadakis, G., Jennings, N.R.: Coalition structures in weighted voting games, vol. 178, pp. 393–397 (2008)Google Scholar
  10. 10.
    Elkind, E., Goldberg, L.A., Goldberg, P.W., Wooldridge, M.: On the computational complexity of weighted voting games. Ann. Math. Artif. Intell. 56(2), 109–131 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Faigle, U., Kern, W., Fekete, S., Hochstaettler, W.: The nucleon of cooperative games and an algorithm for matching games. Math. Program. 83, 195–211 (1998)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Freixas, J., Kurz, S.: On \(\alpha \)-roughly weighted games. Int. J. Game Theory 43(3), 659–692 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Freixas, J., Molinero, X., Olsen, M., Serna, M.: On the complexity of problems on simple games. RAIRO Oper. Res. 45(4), 295–314 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Freixas, J., Puente, M.A.: Dimension of complete simple games with minimum. Eur. J. Oper. Res. 188(2), 555–568 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  16. 16.
    Gvozdeva, T., Hemaspaandra, L.A., Slinko, A.: Three hierarchies of simple games parameterized by “resource” parameters. Int. J. Game Theory 42(1), 1–17 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hegedüs, T., Megiddo, N.: On the geometric separability of Boolean functions. Discrete Appl. Math. 66(3), 205–218 (1996)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hof, F.: Weight distribution in matching games. MSc thesis, University of Twente (2016)Google Scholar
  19. 19.
    Kern, W., Paulusma, D.: Matching games: the least core and the nucleolus. Math. Oper. Res. 28, 294–308 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Koenemann, J., Pashkovich, K., Toth, J.: Computing the nucleolus of weighted cooperative matching games in polynomial time arXiv:1803.03249v2, 9 March 2018
  21. 21.
    Kurz, S., Molinero, X., Olsen, M.: On the construction of high dimensional simple games. In: Proceedings ECAI 2016, New York, pp. 880–885 (2016)Google Scholar
  22. 22.
    Lovász, L., Plummer, M.D.: Matching Theory, vol. 367. American Mathematical Society (2009)Google Scholar
  23. 23.
    Peled, U.N., Simeone, B.: Polynomial-time algorithms for regular set-covering and threshold synthesis. Discrete Appl. Math. 12(1), 57–69 (1985)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Peters, H.: Game Theory: A Multi-Leveled Approach. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69291-1CrossRefzbMATHGoogle Scholar
  25. 25.
    Isbell, J.R.: A class of majority games. Q. J. Math. 7, 183–187 (1956)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory, Ser. B 80(2), 346–355 (2000)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Solymosi, T., Raghavan, T.E.: An algorithm for finding the nucleolus of assignment games. Int. J. Game Theory 23, 119–143 (1994)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Taylor, A.D., Zwicker, W.S.: Weighted voting, multicameral representation, and power. Games Econ. Behav. 5, 170–181 (1993)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Taylor, A.D., Zwicker, W.S.: Simple Games: Desirability Relations, Trading, Pseudoweightings. Princeton University Press (1999)Google Scholar
  30. 30.
    Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Frits Hof
    • 1
  • Walter Kern
    • 1
  • Sascha Kurz
    • 2
  • Daniël Paulusma
    • 3
    Email author
  1. 1.University of TwenteEnschedeThe Netherlands
  2. 2.University of BayreuthBayreuthGermany
  3. 3.Durham UniversityDurhamUK

Personalised recommendations