A Promising Role of Lichens, Their Secondary Metabolites and miRNAs on Treatment of Cancer Disease After Exposure to Carcinogenic Heavy Metals

  • Vildan Torun
  • Elif Değerli
  • Demet Cansaran-Duman


With the increasing use of a wide variety of cancer-causing (carcinogenic) chemicals in industry and in our daily life, problems arising from this chemical pollution of the environment have assumed serious dimensions. There is growing evidence that cancer-causing (carcinogenic) chemicals such as primary heavy metals play a role in disease. The most common disease caused by heavy metals is cancer that means of uncontrolled cell growth. In the current literature, there are not sufficient studies that knowledge gaps identified and a strategy for determining the carcinogenic potential of heavy metals about the link between exposure to heavy metals and incidence of cancer disease. Due to gaps identified and a strategy for determining the carcinogenic potential of heavy metals in this important situation, we mainly evaluate the carcinogenic potential of heavy metals in this review. We have reviewed various cancer-related publications to determine specific mechanisms of heavy metals by which metals can alter miRNA, specific gene expression and signaling pathways at molecular level. In this review we also suggested how we can reduce cancer incidence and assess the contribution of biological materials to the solution of this case. We recommended that lichens could be a biomarker for early detection of carcinogenetic risk of heavy metal exposure and they may provide relevant and accurate assessment between high-dose exposure of heavy metal and occurrence of cancer disease. Another important point is that lichens are a source of diverse secondary metabolites which demonstrate significant antiproliferative effect of various cancer cell lines at low concentrations. Lichen secondary metabolites can be used as promising molecule for cancer treatment. This chapter highlights the importance of lichen and secondary metabolites with potential solution of exposure to heavy metals.


Cancer-causing (carcinogenic) chemicals Heavy metals Cancer miRNA Lichens Secondary metabolites 


  1. 1.
    Arya A, Arya S, Arya M (2011) Chemical carcinogen and cancer risk: an overview. J Chem Pharm Res 3(5):621–631Google Scholar
  2. 2.
    Mathew BB, Singh H, Biju VG, Krishnamurthy NB (2017) Classification, source, and effect of environmental pollutants and their biodegradation. J Environ Pathol Toxicol Oncol 36(1):55–71PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Hasegawa R, Futakuchi M, Mizoguchi Y, Yamaguchi T, Shirai T, Ito N et al (1998) Studies of initiation and promotion of carcinogenesis by N-nitroso compounds. Cancer Lett 123(2):185–191PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Wang TC, Chiou CM, Chang YL (1998) Genetic toxicity of N-methylcarbamate insecticides and their N-nitroso derivatives. Mutagenesis 13(4):405–408PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Lock EA, Reed CJ, Mcmillan JM, Oatis JE, Schnellmann RG (2007) Lack of formic acid production in rat hepatocytes and human renal proximal tubule cells exposed to chloral hydrate or trichloroacetic acid. Toxicology 230(2–3):234–243PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Yaghoubi S, Barlow J, Kass PH, Orenstein FS, Cross S, Heath E (2007) Breast cancer and metals: a literature review. Zero Breast Cancer 2007:1–34Google Scholar
  7. 7.
    Juracek KE, Ziegler AC (2006) The legacy of leaded gasoline in bottom sediment of small rural reservoirs. J Environ Qual 35(6):2092–2102PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Adachi K, Tainosho Y (2004) Characterization of heavy metal particles embedded in tire dust. Environ Int 30(8):1009–1017PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Su CC (2015) Heavy metal and cancer risk. SM J Public Health Epidemiol 1(4):1019Google Scholar
  10. 10.
    Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lakowicz J, Anderson C (1980) Permeability of lipid bilayers to methyl- mercury chloride: quantification by fluorescence quenching of a carbazole-labeled phospholipid. Chem Biol Interact 30:309–323PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Antila E, Mussalo-Rauhamaa H, Kantola M, Atroshi F, Westermarck T (1996) Association of cadmium with human breast cancer. Sci Total Environ 186(3):251–256PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Karmakar N, Jayaraman G (1988) Linear diffusion of lead in the intestinal wall: a theoretical study. IMA J Math Appl Med Biol 5(1):33–43PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Bont DR, Larebeke NV (2004) Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19(3):169–185PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Chakrabarti SK, Bai C, Subramanian KS (2001) DNA-protein cross links induced by nickel compounds in isolated rat lymphocytes, role of reactive oxygen species and specific amino acids. Toxicol Appl Pharmacol 170:153–165PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Cansaran-Duman D, Altunkaynak E, Aras S (2014) Heavy metal accumulation and genotoxicity indicator capacity of the lichen species, Ramalina pollinaria collected from around an iron-steel factory in Karabük, Turkey. Turk J Bot 38:477–490CrossRefGoogle Scholar
  18. 18.
    Cansaran-Duman D, Altunkaynak E, Aslan A, Büyük İ, Aras S (2015) Application of molecular marker to detect DNA damage caused by environmental pollutants in lichen species. Genet Mol Res 14(2):4637–4650PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Vardar Ç, Başaran E, Cansaran-Duman D, Aras S (2014) Assessment of air pollution genotoxicity in the Province of Kayseri (Central Anatolia) by using Pseudevernia furfuracea (L.) Zopf and AFLP markers. Mutat Res Genet Toxicol Environ Mutagen 759:43–50PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wassell J, Rogers SL, Felmingam KL, Bryant RA, Pearson J (2015 Apr) Sex hormones predict the sensory strength and vividness of mental imagery. Biol Psychol 107:61–68PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Zhang C, Lib P, Wena Y, Fengd G, Liua Y, Zhanga Y et al (2018) The promotion on cell growth of androgen-dependent prostate cancer by antimony via mimicking androgen activity. Toxicol Lett 288:136–142PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    El-Harouny MA, El-Morsi DA, Ahmed BRA, El-Atta HMA (2011) Chronic toxicity of some heavy metals and breast cancer in egyptian females. J Clin Toxicol 1:109Google Scholar
  23. 23.
    Pan J, Plant JA, Voulvoulis N, Oates CJ, Ihlenfeld C (2010) Cadmium levels in Europe: implications for human health. Environ Geochem Health 32:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Huff J, Lunn RM, Waalkes MP, Tomatis L, Infante PF (2007) Cadmium-induced cancers in animals and in humans. Int J Occup Environ Health 13:202–212PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects, 1st edn. Pergamon Press, OxfordGoogle Scholar
  26. 26.
    Hambidge KM, Krebs NF (2007) Zinc deficiency: a special challenge. J Nutr 137(4):1101–1105PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Stern BR (2010) Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. J Toxicol Environ Health A 73:114–127PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Bánfalvi G (ed) (2011) Heavy metals, trace elements and their cellular effects, 1st edn. Springer, New YorkGoogle Scholar
  29. 29.
    Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164PubMedPubMedCentralGoogle Scholar
  30. 30.
    Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Grimsrud TK, Andersen A (2012) Unrecognized risks of nickel-related respiratory cancer among Canadian electrolysis workers. Scand J Work Environ Health 38:503–515PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Grimsrud TK, Berge SR, Martinsen JI, Andersen A (2003) Lung cancer incidence among Norwegian nickel-refinery workers 1953–2000. J Environ Monit 5:190–197PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Gul N, Shah MT, Khan S, Khattak NU, Muhammad S (2015) Arsenic and heavy metals contamination, risk assessment and their source in drinking water of the Mardan District, Khyber Pakhtunkhwa, Pakistan. J Water Health 13:1073–1084PubMedCrossRefGoogle Scholar
  34. 34.
    Harvey PJ, Handley HK, Taylor MP (2015) Identification of the sources of metal (lead) contamination in drinking waters in north-eastern Tasmania using lead isotopic compositions. Environ Sci Pollut Res Int 22:12276–12288PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Bau DT, Wang TS, Chung CH, Wang AS, Wang AS, Jan KY (2002) Oxidative DNA adducts and DNA-protein cross-links are the major DNA lesions induced by arsenite. Environ Health Perspect 110(5):753–756PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kim HS, Kin YJ, Seo YR (2015a) An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. J Cancer Prev 20(4):232–240PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Iregren A (1990) Psychological test performance in foundry workers exposed to low levels of manganese. Neurotoxicol Teratol 12:673–675PubMedCrossRefGoogle Scholar
  38. 38.
    Hirata Y (2002) Manganese-induced apoptosis in PC12 cells. Neurotoxicol Teratol 24:639–653PubMedCrossRefGoogle Scholar
  39. 39.
    Deng Y, Xu D, Xu B, Xu Z, Tian Y, Feng W et al (2011) G0/G1 phase arrest and apoptosis induced by manganese chloride on cultured rat astrocytes and protective effects of riluzole. Biol Trace Elem Res 144(1–3):832–842PubMedCrossRefGoogle Scholar
  40. 40.
    Hernroth B, Holm I, Gondıkas A, Tassıdıs H (2018) Manganese inhibits viability of prostate cancer cells. Anticancer Res 38:137–145PubMedPubMedCentralGoogle Scholar
  41. 41.
    Garg UK, Kaur MP, Garg VK, Sud D (2007) Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J Hazard Mater 140:60–68PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Eastmond DA, Macgregor JT, Slesinski RS (2008) Trivalent chromium: assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Crit Rev Toxicol 38:173–190PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Hamilton JW, Wetterhahn KE (1986) Chromium (VI)-induced DNA damage in chick embryo liver and blood cells in vivo. Carcinogenesis 7:2085–2088PubMedCrossRefGoogle Scholar
  44. 44.
    Gammelgaard B, Fullerton A, Avnstorp C, Menné T (1992) Permeation of chromium salts through human skin in vitro. Contact Dermatitis 27:302–310PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Mahurpawar M (2015) Effects of heavy metals on human health. Int J Res 2015:1–7Google Scholar
  46. 46.
    Raza U, Saatci Ö, Uhlmann S, Ansari SA, Eyüpoğlu E, Yurdusev E et al (2016) The miR-644a/CTBP1/p53 axis suppresses drug resistance by simultaneous inhibition of cell survival and epithelial-mesenchymal transition in breast cancer. Oncotarget 7(31):49859–49877PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Banin Hirata BK, Maeda Oda JM, Guembarovski RL, Ariza CB, Coral de Oliveira CE, Ehara Watanabe MA (2014) Molecular markers for breast cancer: prediction on tumor behavior. Dis Markers 2014:5131–5158CrossRefGoogle Scholar
  48. 48.
    Matamala N, Vargas MT, Campora RG, Minambres R, Arias JI, Menendez P (2015) Tumor microrna expression profiling ıdentifies circulating micrornas for early breast cancer detection. Clin Chem 61(8):1098–1106PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S et al (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    McDermott AM, Miller N, Wall D, Martyn LM, Ball G, Sweeney KJ et al (2014) Identification and validation of oncologic mirna biomarkers for luminal a-like breast cancer. PLoS One 9(1):e87032PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Piccart-Gebhart MJ (2011) New developments in hormone receptor–positive disease. Oncologist 16:40–50PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Foulkes W, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kılıç N, Değerli E, Torun V, Altaytaş F, Cansaran-Duman D (2016) Investigation of synergistic effect of tamoxifen and usnic acid on breast cancer cell line. JSM Biol 1(1006):1–4Google Scholar
  54. 54.
    Apuri S (2017) Neoadjuvant and adjuvant therapies for breast cancer. South Med J 110(10):638–642PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Vimalraj S, Miranda PJ, Ramyakrishna B, Selvamurugan N (2013) Regulation of breast cancer and bone metastasis by microRNAs. Dis Markers 35(5):369–387PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Romaniuk A, Lyndin M, Moskalenko R, Kuzenko Y, Gladchenko O, Lyndina Y (2015) Pathogenetic mechanisms of heavy metals effect on proapoptotic and proliferative potential of breast cancer. Intervent Med Appl Sci 7(2):63–67CrossRefGoogle Scholar
  57. 57.
    Romaniuk А, Lyndin M, Sikora V, Lyndina Y, Romaniuk S, Sikora K (2017) Heavy metals effect on breast cancer progression. J Occup Med Toxicol 12:32PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Xi H (2008) Does iron have a role in breast cancer? Lancet Oncol 9(8):803–807CrossRefGoogle Scholar
  59. 59.
    Stoica A, Pentecost E, Martin MB (2000) Effects of arsenite on estrogen receptor-alpha expression and activity in MCF-7 breast cancer cells. Endocrinology 141(10):3595–3602PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Ostrakhovitch EA, Cherian MG (2005) 2005. Role of p53 and reactive oxygen species in apoptotic response to copper and zinc in epithelial breast cancer cells. Apoptosis 10(1):111–121PubMedCrossRefGoogle Scholar
  61. 61.
    Abo El-Atta H M, El-Harouny M A, El-Mansory AM, Badria, FA, El-Bakary AA (2011) Cadmium genotoxicity and breast carcinoma. MD thesis, Mansoura University, pp 164–166Google Scholar
  62. 62.
    Humphries B, Wang Z, Yang C (2016) The role of microRNAs in metal carcinogen-induced cell malignant transformation and tumorigenesis. Food Chem Toxicol 98(Pt A):58–65PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Duffus JH (2002) Heavy metals—a meaningless term? Pure Appl Chem 74:793–807CrossRefGoogle Scholar
  64. 64.
    Hu H (2002) Human health and heavy metals exposure. In: McCally M (ed) Life support: the environment and human health. MIT Press, Cambridge, pp 65–82Google Scholar
  65. 65.
    Langie SAS, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A et al (2015) Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis 36:S61–S88PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wang Z, Zhao Y, Smith E, Goodall GJ, Drew PA, Brabletz T et al (2011) Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by micro-RNA-200b. Toxicol Sci 121:110–122PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ji W, Yang L, Yuan J, Yang L, Zhang M, Qi D et al (2013) MicroRNA-152 targets DNA methyltransferase 1 in NiS-transformed cells via a feedback mechanism. Carcinogenesis 34:446–453PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Agency for Toxic Substances and Disease Registry (ATSDR) (2005) Toxicological profile for Nickel. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GAGoogle Scholar
  69. 69.
    He J, Qian X, Carpenter R, Xu Q, Wang L, Qi Y et al (2013) Repression of mir-143 mediates Cr (VI)-induced tumor angiogenesis via IGF-IR/IRS1/ERK/IL-8 pathway. Toxicol Sci 134:26–38PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Ngalame NN, Makia NL, Waalkes MP, Tokar EJ (2015) Mitigation of arsenic-induced acquired cancer phenotype in prostate cancer stem cells by miR-143 restoration. Toxicol Appl Pharmacol 15:30159-9Google Scholar
  71. 71.
    Liu Q, Zheng C, Shen H, Zhou Z, Lei Y (2015) MicroRNAs-mRNAs expression profile and their potential role in malignant transformation of human bronchial epithelial cells induced by cadmium. Biomed Res Int:9020–9025Google Scholar
  72. 72.
    Ding YF, Zhu C (2009) The role of microRNAs in copper and cadmium homeostasis. Biochem Biophys Res Commun 386:6–10PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Marsit CJ, Eddy K, Kelsey KT (2006) MicroRNA responses to cellular stress. Cancer Res 66:10843–10848PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Wang B, Li Y, Shao C, Tan Y, Cai L (2012) Cadmium and its epigenetic effects. Curr Med Chem 19:2611–2620PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012) Genome-wide identification of medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ 35:86–99PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Ho SM, Johnson A, Tarapore P, Janakiram V, Zhang X, Leung YK (2012) Environmental epigenetics and ıts ımplication on disease risk and health outcomes. ILAR J 53(3–4):289–305PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Bessadóttir M, Skúladóttir EA, Gowan S, Eccles S, Ómarsdóttir S, Ögmundsdóttir H (2014) Effects of anti-proliferative lichen metabolite, protolichesterinic acid on fatty acid synthase, cell signalling and drug response in breast cancer cells. Phytomedicine 21(12):1717–1724PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Aras S, Kanlıtepe Ç, Cansaran-Duman D, Halıcı MG, Beyaztaş T (2010) Assessment of air pollution genotoxicity by molecular markers in the exposed samples of Pseudevernia furfuracea (L.) Zopf in the province of Kayseri (Central Anatolia). J Environ Monit 12:536–543PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Cansaran-Duman D (2011) Study on accumulation ability of two lichen species Hypogymnia physodes and Usnea hirta at iron-steel factory site. Turkey J Environ Biol 32:839–844PubMedPubMedCentralGoogle Scholar
  80. 80.
    Yang Y, Park SY, Nguyen TT, Yu YH, Nguyen TV, Sun EG et al (2015) Lichen secondary metabolite, physciosporin, inhibits lung cancer cell motility. PLoS One 10(9):e0137889PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Ebrahim HY, Elsayed HE, Mohyeldin MM, Akl MR, Bhattacharjee J, Egbert S (2016) Norstictic acid inhibits breast cancer cell proliferation, migration, invasion, and in vivo invasive growth through targeting C-Met. Phytother Res 30(4):557–566PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Dinçsoy AB, Cansaran-Duman D (2017) Changes in apoptosis related gene expression profiles in cancer cell line exposed to usnic acid lichen secondary metabolite. Turk J Biol 41:484–493CrossRefGoogle Scholar
  83. 83.
    Kılıç N, Derici K, Büyük İ, Soydam-Aydın S, Aras S, Cansaran-Duman D (2018) Evaluation of in vitro anticancer activity of vulpinic acid and its apoptotic potential using gene expression and protein analysis. Indian J Pharm Edu Res 52(3):46–54Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Vildan Torun
    • 1
  • Elif Değerli
    • 1
  • Demet Cansaran-Duman
    • 1
  1. 1.System Biotechnology Advance Research Unit, Biotechnology InstituteAnkara UniversityAnkaraTurkey

Personalised recommendations