Phytoremediation of Industrial Wastewater by Hydrophytes

  • Hera Naheed Khan
  • Muhammad Faisal


Availability of pure water is becoming scarce with the rapid industrialization and urbanization, and it’s the need of the hour to minimize contamination sources and develop decontamination methods that are least damaging. With the rapid increase in world population, the need to provide clean water for communities in 2050 will be much greater and challenging. Cleaning the environment using classical approaches can cost up to 400 billion US dollars, whereas cleaning heavy metal-contaminated sites within the USA only can cost up to 7.1 billion US dollars, and these conventional techniques seem quite costly; therefore scientists looked for other cost-effective approaches like bioremediation and phytoremediation. These approaches are not only cheaper but also eco-friendly. Removal of heavy metal pollutants from industrial wastewater using plant roots, a method commonly known as rhizofiltration, can save up to millions because of the ability of the plants to remove as much as 60% of their dry weight as toxic metals. Plants have been characterized as hyperaccumulators because of their ability to concentrate more than 1% of toxic metals within their organs, mostly leaves. Plants employ different metal uptake mechanisms and then can metabolize metals using plant reductases, etc. into less toxic forms sometimes releasing them as vapors in the atmosphere. Terrestrial plants are better for cleansing of soil, while aquatic plants can effectively be used for cleaning contaminated water. Macrophytes have been extensively reported as water-cleaning gurus; hydrophytes in constructed wetlands for water cleaning has been used for experimental purposes, and several studies claim their success in open field experiments as well. The chapter overviews the water pollution issue and discusses how plants can be used for phytoremediation by focusing on the strategies that are employed by these hyperaccumulator plant species.


Wastewater Heavy metals Phytoremediation Hydrophytes Hyperaccumulators 


  1. 1.
    Kahil MT, Dinar A, Albiac J (2015) Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. J Hydrol 522:95–109CrossRefGoogle Scholar
  2. 2.
    Kneese AV (2015) Water pollution: economics aspects and research needs. Routledge, LondonCrossRefGoogle Scholar
  3. 3.
    Al-Mulali U, Ozturk I (2015) The effect of energy consumption, urbanization, trade openness, industrial output, and the political stability on the environmental degradation in the MENA (Middle East and North African) region. Energy 84:382–389CrossRefGoogle Scholar
  4. 4.
    Martens P (2014) Health and climate change: modelling the impacts of global warming and ozone depletion. Routledge, LondonCrossRefGoogle Scholar
  5. 5.
    Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman AJ, Jenkins A, Ferrier RC, Li H, Luo W (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ Int 77:5–15PubMedCrossRefGoogle Scholar
  6. 6.
    Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons, Hoboken, NJGoogle Scholar
  7. 7.
    Stanley MC, Beggs JR, Bassett IE, Burns BR, Dirks KN, Jones DN, Linklater WL, Macinnis-Ng C, Simcock R, Souter-Brown G (2015) Emerging threats in urban ecosystems: a horizon scanning exercise. Front Ecol Environ 13:553–560CrossRefGoogle Scholar
  8. 8.
    Elmqvist T, Zipperer W, Güneralp B (2016) Urbanization, habitat loss, biodiversity decline: solution pathways to break the cycle. In: Seta K, Solecki WD, Griffith CA (eds) Routledge handbook of urbanization and global environmental change. Routledge, London, pp 139–151Google Scholar
  9. 9.
    Sun G, Michelsen AM, Sheng Z, Fang AF, Shang Y, Zhang H (2015) Featured collection introduction: water for megacities—challenges and solutions. J Am Water Resour Assoc 51:585–588CrossRefGoogle Scholar
  10. 10.
    Cao S, Lv Y, Zheng H, Wang X (2014) Challenges facing China’s unbalanced urbanization strategy. Land Use Policy 39:412–415CrossRefGoogle Scholar
  11. 11.
    McDonnell MJ, MacGregor-Fors I (2016) The ecological future of cities. Science 352:936–938PubMedCrossRefGoogle Scholar
  12. 12.
    Tritsch I, Le Tourneau F-M (2016) Population densities and deforestation in the Brazilian Amazon: new insights on the current human settlement patterns. Appl Geogr 76:163–172CrossRefGoogle Scholar
  13. 13.
    Sahu K (2016) Heavy metal pollution of air, water and soil—a review. SGAT Bull 2016:16Google Scholar
  14. 14.
    Constant K, Nourry C, Seegmuller T (2014) Population growth in polluting industrialization. Resour Energy Econ 36:229–247CrossRefGoogle Scholar
  15. 15.
    Laws EA (2017) Aquatic pollution: an introductory text. John Wiley & Sons, Hoboken, NJGoogle Scholar
  16. 16.
    Varjani SJ, Agarwal AK, Gnansounou E, Gurunathan B (2018) Bioremediation: applications for environmental protection and management. Springer, New York, NYGoogle Scholar
  17. 17.
    Iriel A, Lagorio MG, Cirelli AF (2015) Biosorption of arsenic from groundwater using Vallisneria gigantea plants. Kinetics, equilibrium and photophysical considerations. Chemosphere 138:383–389PubMedCrossRefGoogle Scholar
  18. 18.
    Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. CLEAN Soil Air Water 39:735–741CrossRefGoogle Scholar
  19. 19.
    Jenkins SH (2015) Advances in water pollution research: proceedings of the Fourth International Conference Held in Prague 1969. Elsevier, New York City, NYGoogle Scholar
  20. 20.
    Förstner U, Wittmann GT (2012) Metal pollution in the aquatic environment. Springer, New York, NYGoogle Scholar
  21. 21.
    Rai PK (2009a) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39:697–753CrossRefGoogle Scholar
  22. 22.
    Segerson K (2017) Non-point source pollution in an international context. Reference on Natural Resources and Environmental Policy in the Era of Global Change: Volume 1: Game theory. World Scientific 1:115–137Google Scholar
  23. 23.
    Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072PubMedCrossRefGoogle Scholar
  24. 24.
    Ebrahiem EE, Al-Maghrabi MN, Mobarki AR (2017) Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arab J Chem 10:S1674–S1679CrossRefGoogle Scholar
  25. 25.
    Tichonovas M, Krugly E, Racys V, Hippler R, Kauneliene V, Stasiulaitiene I, Martuzevicius D (2013) Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment. Chem Eng J 229:9–19CrossRefGoogle Scholar
  26. 26.
    Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214:442–448PubMedCrossRefGoogle Scholar
  27. 27.
    Wegman RC, Melis PH, Josefsson B (1986) Organic pollutants in water. American Chemical Society, Washington, DCGoogle Scholar
  28. 28.
    Comstock MJ Organic pollutants in water, copyright, advances in chemistry series, foreword, about the editors: sampling, analysis, and toxicity testing. ACS Publications, Washington, DCGoogle Scholar
  29. 29.
    Potter DW, Pawliszyn J (1994) Rapid determination of polyaromatic hydrocarbons and polychlorinated biphenyls in water using solid-phase microextraction and GC/MS. Environ Sci Technol 28:298–305PubMedCrossRefGoogle Scholar
  30. 30.
    Duruibe J, Ogwuegbu M, Egwurugwu J (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118Google Scholar
  31. 31.
    Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418CrossRefGoogle Scholar
  32. 32.
    Inoue K (2013) Heavy metal toxicity. J Clin Toxicol 3:2161–0495CrossRefGoogle Scholar
  33. 33.
    Singh N, Kumar D, Sahu AP (2007) Arsenic in the environment: effects on human health and possible prevention. J Environ Biol 28:359PubMedPubMedCentralGoogle Scholar
  34. 34.
    Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Patrick L (2002) Mercury toxicity and antioxidants: part I: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity-mercury toxicity. Toxicol Appl Pharmacol 7:456–471Google Scholar
  36. 36.
    Patrick L (2003) Toxic metals and antioxidants: part II the role of antioxidants in arsenic and cadmium toxicity. (Toxic metals part II). Altern Med Rev 8:106–129PubMedPubMedCentralGoogle Scholar
  37. 37.
    Stohs S, Bagghi D (2005) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 39:1267–1268Google Scholar
  38. 38.
    Shaw C, Tomljenovic L (2013) Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity. Immunol Res 56:304–316PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Grazuleviciene R, Nadisauskiene R, Buinauskiene J, Grazulevicius T (2009) Effects of elevated levels of manganese and iron in drinking water on birth outcomes. Pol J Environ Stud 18:819–825Google Scholar
  40. 40.
    Domingo JL (2001) Reproductive and developmental toxicity of natural and depleted uranium: a review. Reprod Toxicol 15:603–609PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Kurttio P, Harmoinen A, Saha H, Salonen L, Karpas Z, Komulainen H, Auvinen A (2006) Kidney toxicity of ingested uranium from drinking water. Am J Kidney Dis 47:972–982PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Denkhaus E, Salnikow K (2002) Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42:35–56PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Mahmood A, Malik RN (2014) Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arab J Chem 7:91–99CrossRefGoogle Scholar
  45. 45.
    Wongsasuluk P, Chotpantarat S, Siriwong W, Robson M (2014) Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ Geochem Health 36:169–182PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Sheehan MC, Burke TA, Navas-Acien A, Breysse PN, McGready J, Fox MA (2014) Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bull World Health Organ 92:254–269FPubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Grandjean P, Weihe P, Debes F, Choi AL, Budtz-Jørgensen E (2014) Neurotoxicity from prenatal and postnatal exposure to methylmercury. Neurotoxicol Teratol 43:39–44PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Matović V, Buha A, Ðukić-Ćosić D, Bulat Z (2015) Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 78:130–140PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    García-Esquinas E, Pollan M, Tellez-Plaza M, Francesconi KA, Goessler W, Guallar E, Umans JG, Yeh J, Best LG, Navas-Acien A (2014) Cadmium exposure and cancer mortality in a prospective cohort: the strong heart study. Environ Health Perspect 122:363PubMedPubMedCentralGoogle Scholar
  50. 50.
    Tsai T-L, Kuo C-C, Pan W-H, Chung Y-T, Chen C-Y, Wu T-N, Wang S-L (2017) The decline in kidney function with chromium exposure is exacerbated with co-exposure to lead and cadmium. Kidney Int 92(3):710–720PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kundu A, Lim JS, Tae IH, Lim J-a, Joo H, Ha M, Bae O-N, Lee BM, Kim HS (2016) Insights into the impact of lead exposure to children through [1H] NMR-based metabolomics. 환경독성보건학회 심포지엄 및 학술대회 10:280–280Google Scholar
  52. 52.
    Sharma S, Singh B, Manchanda V (2015) Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22:946–962CrossRefGoogle Scholar
  53. 53.
    Hong-Bo S, Li-Ye C, Cheng-Jiang R, Hua L, Dong-Gang G, Wei-Xiang L (2010) Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Crit Rev Biotechnol 30:23–30PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    van der Ent A, Baker AJ, Reeves RD, Pollard AJ, Schat H (2015) Commentary: toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants. Front Plant Sci 6:554PubMedPubMedCentralGoogle Scholar
  55. 55.
    Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Annapurna D, Rajkumar M, Prasad M (2016) Potential of Castor bean (Ricinus communis L.) for phytoremediation of metalliferous waste assisted by plant growth-promoting bacteria: possible cogeneration of economic products. Bioremediation and bioeconomy. Elsevier, New York, NY, pp 149–175Google Scholar
  57. 57.
    Weyens N, Thijs S, Popek R, Witters N, Przybysz A, Espenshade J, Gawronska H, Vangronsveld J, Gawronski SW (2015) The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. Int J Mol Sci 16:25576–25604PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Yongpisanphop J, Babel S, Kruatrachue M, Pokethitiyook P (2017) Hydroponic screening of fast-growing tree species for lead phytoremediation potential. Bull Environ Contam Toxicol 99:518–523PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Callery S, Courtney R (2015) Assessing metal transfer to vegetation and grazers on reclaimed pyritic Zn and Pb tailings. Environ Sci Pollut Res 22:19764–19772CrossRefGoogle Scholar
  60. 60.
    Miretzky P, Saralegui A, Cirelli AF (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57:997–1005PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Mishra VK, Shukla R (2016) Aquatic macrophytes for the removal of heavy metals from coal mining effluent. Phytoremediation. Springer, New York, NY, pp 143–156Google Scholar
  62. 62.
    Rezania S, Taib SM, Din MFM, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Sakakibara M (2016) Phytoremediation of toxic elements-polluted water and soils by aquatic macrophyte Eleocharis acicularis. AIP conference proceedings. AIP Publishing, Melville, NY, p 020038Google Scholar
  64. 64.
    Yamazaki S, Okazaki K, Kurahashi T, Sakakibara M (2017) Phytoremediation of arsenic-and molybdenum-contaminated alkaline wastewater by Eleocharis acicularis in winter in Japan. IOP conference series: earth and environmental science. IOP Publishing, Bristol, p 012018Google Scholar
  65. 65.
    Nurfitri A, Masayuki S, Koichiro S (2017) Phytoremediation of heavy metal-polluted mine drainage by Eleocharis Acicularis. Environ Sci:13, 131Google Scholar
  66. 66.
    Das S, Goswami S, Talukdar AD (2014) A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L. Bull Environ Contam Toxicol 92:169–174PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Chaudhary E, Sharma P (2014) Duckweed plant: a better future option for phytoremediation. Int J Emerg Sci Eng 2:39–41Google Scholar
  68. 68.
    Dar MI, Khan FA, Rehman F, Masoodi A, Ansari AA, Varshney D, Naushin F, Naikoo MI (2015) Roles of Brassicaceae in phytoremediation of metals and metalloids. Phytoremediation. Springer, New York, NY, pp 201–215Google Scholar
  69. 69.
    Goolsby EW, Mason CM (2015) Toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants. Front Plant Sci 6:33PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Anjum NA, Umar S, Iqbal M (2014) Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants—implications for phytoremediation. Environ Sci Pollut Res 21:10286–10293CrossRefGoogle Scholar
  71. 71.
    Angelova V, Ivanova R, Todorov J, Ivanov K (2017) Potential of rapeseed (Brassica napus L.) for phytoremediation of soils contaminated with heavy metals. J Environ Prot Ecol 18:468–478Google Scholar
  72. 72.
    Baker AJ (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  73. 73.
    Dhiman SS, Selvaraj C, Li J, Singh R, Zhao X, Kim D, Kim JY, Kang YC, Lee J-K (2016) Phytoremediation of metal-contaminated soils by the hyperaccumulator canola (Brassica napus L.) and the use of its biomass for ethanol production. Fuel 183:107–114CrossRefGoogle Scholar
  74. 74.
    Liu H, Yuan M, Tan S, Yang X, Lan Z, Jiang Q, Ye Z, Jing Y (2015) Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol 89:44–49CrossRefGoogle Scholar
  75. 75.
    Wu Q, Leung JY, Huang X, Yao B, Yuan X, Ma J, Guo S (2015b) Evaluation of the ability of black nightshade Solanum nigrum L. for phytoremediation of thallium-contaminated soil. Environ Sci Pollut Res 22:11478–11487CrossRefGoogle Scholar
  76. 76.
    Hussain S, Akram M, Abbas G, Murtaza B, Shahid M, Shah NS, Bibi I, Niazi NK (2017) Arsenic tolerance and phytoremediation potential of Conocarpus erectus L. and Populus deltoides L. Int J Phytoremediation 19(11):985–991PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Chang F-C, Ko C-H, Tsai M-J, Wang Y-N, Chung C-Y (2014) Phytoremediation of heavy metal contaminated soil by Jatropha curcas. Ecotoxicology 23:1969–1978PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Olivero-Verbel J, Díez S (2015) Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere 127:58–63PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    El-Ramady HR, Abdalla N, Alshaal T, Fári M, Prokisch J, Pilon-Smits EA, Domokos-Szabolcsy É (2015) Selenium phytoremediation by giant reed. Hydrogen production and remediation of carbon and pollutants. Springer, New York, NY, pp 133–198CrossRefGoogle Scholar
  80. 80.
    Trivedi S, Ansari AA (2015) Molecular mechanisms in the phytoremediation of heavy metals from coastal waters. Phytoremediation. Springer, New York, NY, pp 219–231Google Scholar
  81. 81.
    Lange B, Ent A, Baker AJM, Echevarria G, Mahy G, Malaisse F, Meerts P, Pourret O, Verbruggen N, Faucon MP (2017) Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytol 213:537–551PubMedCrossRefGoogle Scholar
  82. 82.
    Reeves RD, Baker AJ, Jaffré T, Erskine PD, Echevarria G, Ent A (2017) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218(2):407–411PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    van der Ent A, Tang Y-T, Sterckeman T, Echevarria G, Morel J-L, Qiu R-L (2017) Nickel hyperaccumulation mechanisms: a review on the current state of knowledge. Plant Soil 423:1–11Google Scholar
  84. 84.
    Merlot S, de la Torre VSG, Hanikenne M (2018) Physiology and molecular biology of trace element hyperaccumulation. Agromining: farming for metals. Springer, New York, NY, pp 93–116Google Scholar
  85. 85.
    Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654CrossRefGoogle Scholar
  86. 86.
    Venegas A, Rigol A, Vidal M (2015) Viability of organic wastes and biochars as amendments for the remediation of heavy metal-contaminated soils. Chemosphere 119:190–198PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161CrossRefGoogle Scholar
  88. 88.
    Thakur S, Singh L, Ab Wahid Z, Siddiqui MF, Atnaw SM, Din MFM (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188:206PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40CrossRefGoogle Scholar
  90. 90.
    Danh LT, Truong P, Mammucari R, Foster N (2014) A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata. Int J Phytoremediation 16:429–453PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Liu D, Islam E, Ma J, Wang X, Mahmood Q, Jin X, Li T, Yang X, Gupta D (2008) Optimization of chelator-assisted phytoextraction, using EDTA, lead and Sedum alfredii Hance as a model system. Bull Environ Contam Toxicol 81:30–35PubMedCrossRefGoogle Scholar
  92. 92.
    Yadav AK, Pathak B, Fulekar M (2015) Rhizofiltration of heavy metals (cadmium, lead and zinc) from fly ash leachates using water hyacinth (Eichhornia Crassipes). Int J Environ 4:179–196CrossRefGoogle Scholar
  93. 93.
    Gaur N, Flora G, Yadav M, Tiwari A (2014) A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Processes Impacts 16:180–193CrossRefGoogle Scholar
  94. 94.
    Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881CrossRefGoogle Scholar
  95. 95.
    Martínez-Alcalá I, Clemente R, Bernal M (2012) Efficiency of a phytoimmobilisation strategy for heavy metal contaminated soils using white lupin. J Geochem Explor 123:95–100CrossRefGoogle Scholar
  96. 96.
    Houben D, Pircar J, Sonnet P (2012) Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability. J Geochem Explor 123:87–94CrossRefGoogle Scholar
  97. 97.
    Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729CrossRefGoogle Scholar
  98. 98.
    Bennicelli R, Stępniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals (Hg (II), Cr (III), Cr (VI)) from municipal waste water. Chemosphere 55:141–146PubMedCrossRefGoogle Scholar
  99. 99.
    Török A, Gulyás Z, Szalai G, Kocsy G, Majdik C (2015) Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization. J Hazard Mater 299:371–378PubMedCrossRefGoogle Scholar
  100. 100.
    Wani R, Ganai B, Shah M, Uqab B (2017) Heavy metal uptake potential of aquatic plants through phytoremediation technique—a review. J Bioremed Biodegr 8:2CrossRefGoogle Scholar
  101. 101.
    Mishra VK, Tripathi B, Kim K-H (2009) Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. J Hazard Mater 172:749–754PubMedCrossRefGoogle Scholar
  102. 102.
    Rai PK (2009b) Microcosm investigation on phytoremediation of Cr using Azolla pinnata. Int J Phytoremediation 12:96–104CrossRefGoogle Scholar
  103. 103.
    Pflugmacher S, Kühn S, Lee S-H, Choi J-W, Baik S, Kwon K-S, Contardo-Jara V (2015) Green liver systems® for water purification: using the phytoremediation potential of aquatic macrophytes for the removal of different cyanobacterial toxins from water. Am J Plant Sci 6:1607CrossRefGoogle Scholar
  104. 104.
    Kolada A, Pasztaleniec A, Bielczyńska A, Soszka H (2016) Phytoplankton, macrophytes and benthic diatoms in lake classification: consistent, congruent, redundant? Lessons learnt from WFD-compliant monitoring in Poland. Limnol Ecol Manag Inland Waters 59:44–52CrossRefGoogle Scholar
  105. 105.
    Pi N, Ng J, Kelly B (2017) Uptake and elimination kinetics of perfluoroalkyl substances in submerged and free-floating aquatic macrophytes: results of mesocosm experiments with Echinodorus horemanii and Eichhornia crassipes. Water Res 117:167–174PubMedCrossRefGoogle Scholar
  106. 106.
    Newete SW, Byrne MJ (2016) The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Environ Sci Pollut Res 23:10630–10643CrossRefGoogle Scholar
  107. 107.
    Wang Z, Yao L, Liu G, Liu W (2014) Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China. Ecotoxicol Environ Saf 107:200–206PubMedCrossRefGoogle Scholar
  108. 108.
    Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41:122–137PubMedCrossRefGoogle Scholar
  109. 109.
    Xiaoyong Z, Yayun T, Jubin Z (2015) Adsorption of Cu(2+) and Pb(2+) from aqueous solution with water hyacinth. Technol Water Treat 2:13Google Scholar
  110. 110.
    Patel S (2012) Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Rev Environ Sci Biotechnol 11:249–259CrossRefGoogle Scholar
  111. 111.
    Chunkao K, Nimpee C, Duangmal K (2012) The King’s initiatives using water hyacinth to remove heavy metals and plant nutrients from wastewater through Bueng Makkasan in Bangkok, Thailand. Ecol Eng 39:40–52CrossRefGoogle Scholar
  112. 112.
    Gupta P, Roy S, Mahindrakar AB (2012) Treatment of water using water hyacinth, water lettuce and vetiver grass—a review. Resour Environ 2:202–215CrossRefGoogle Scholar
  113. 113.
    Singh D, Tiwari A, Gupta R (2012) Phytoremediation of lead from wastewater using aquatic plants. J Agric Technol 8:1–11Google Scholar
  114. 114.
    Emerhi E (2011) Physical and combustion properties of briquettes produced from sawdust of three hardwood species and different organic binders. Adv Appl Sci Res 2:236–246Google Scholar
  115. 115.
    Demim S, Drouiche N, Aouabed A, Benayad T, Couderchet M, Semsari S (2014) Study of heavy metal removal from heavy metal mixture using the CCD method. J Ind Eng Chem 20:512–520CrossRefGoogle Scholar
  116. 116.
    Zhang D, Gersberg RM, Ng WJ, Tan SK (2014) Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ Pollut 184:620–639PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M, Mohammad A (2016) Phytoremediation potential of Lemna minor L. for heavy metals. Int J Phytoremediation 18:25–32PubMedCrossRefGoogle Scholar
  118. 118.
    Prajapati SK, Meravi N, Singh S (2012) Phytoremediation of Chromium and Cobalt using Pistia stratiotes: a sustainable approach. Proc Int Acad Ecol Environ Sci 2:136Google Scholar
  119. 119.
    Rodrigues ACD, do Amaral Sobrinho NMB, dos Santos FS, dos Santos AM, Pereira ACC, Lima ESA (2017) Biosorption of toxic metals by water lettuce (Pistia stratiotes) Biomass. Water Air Soil Pollut 228:156CrossRefGoogle Scholar
  120. 120.
    Ng YS, Chan DJC (2017) Phytoremediation capabilities of Spirodela polyrhiza, Salvinia molesta and Lemna sp. in synthetic wastewater: a comparative study. Int J Phytoremediation:29053371Google Scholar
  121. 121.
    Ladislas S, El-Mufleh A, Gérente C, Chazarenc F, Andrès Y, Béchet B (2012) Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water Air Soil Pollut 223:877–888CrossRefGoogle Scholar
  122. 122.
    Xing W, Wu H, Hao B, Huang W, Liu G (2013) Bioaccumulation of heavy metals by submerged macrophytes: looking for hyperaccumulators in eutrophic lakes. Environ Sci Technol 47:4695–4703PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Kumari M, Tripathi B (2015) Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicol Environ Saf 112:80–86PubMedCrossRefGoogle Scholar
  124. 124.
    Kadlec RH, Knight R, Vymazal J, Brix H, Cooper P, Haberl R (2017) Constructed wetlands for pollution control. IWA Publishing, LondonGoogle Scholar
  125. 125.
    Wu H, Zhang J, Ngo HH, Guo W, Hu Z, Liang S, Fan J, Liu H (2015a) A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol 175:594–601PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Vymazal J (2010) Constructed wetlands for wastewater treatment. Water 2:530–549CrossRefGoogle Scholar
  127. 127.
    de la Varga D, Soto M, Arias CA, van Oirschot D, Kilian R, Pascual A, Álvarez JA (2017) Constructed wetlands for industrial wastewater treatment and removal of nutrients. Technologies for the treatment and recovery of nutrients from industrial wastewater. Inform Sci Ref 2018:202–230Google Scholar
  128. 128.
    Abou-Elela SI, Golinielli G, Abou-Taleb EM, Hellal MS (2013) Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecol Eng 61:460–468CrossRefGoogle Scholar
  129. 129.
    Pedescoll A, Sidrach-Cardona R, Hijosa-Valsero M, Bécares E (2015) Design parameters affecting metals removal in horizontal constructed wetlands for domestic wastewater treatment. Ecol Eng 80:92–99CrossRefGoogle Scholar
  130. 130.
    Zhu H, Yan B, Xu Y, Guan J, Liu S (2014) Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios. Ecol Eng 63:58–63CrossRefGoogle Scholar
  131. 131.
    Vymazal J (2011b) Long-term performance of constructed wetlands with horizontal sub-surface flow: ten case studies from the Czech Republic. Ecol Eng 37:54–63CrossRefGoogle Scholar
  132. 132.
    Cheng S, Grosse W, Karrenbrock F, Thoennessen M (2002) Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng 18:317–325CrossRefGoogle Scholar
  133. 133.
    Vymazal J (2011a) Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia 674:133–156CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Hera Naheed Khan
    • 1
  • Muhammad Faisal
    • 1
  1. 1.Department of Microbiology and Molecular GeneticsUniversity of the PunjabLahorePakistan

Personalised recommendations