Role of PGPR in the Phytoremediation of Heavy Metals and Crop Growth Under Municipal Wastewater Irrigation

  • Naeem Khan
  • Asghari Bano


The use of wastewater for crop growth is a centuries-old practice that gets renewed attention with the rising shortage of freshwater resources in many arid and semiarid regions of the world. Wastewater is extensively used as an inexpensive substitute to conservative irrigation water: supporting livelihoods and generating significant value to the agriculture of urban and peri-urban areas. Many microorganisms are known to inhabit soil, especially rhizosphere, and play an important role in plant development and in remediation of heavy metals. Microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization, and redox changes. Nanoparticles play a key role in plant growth and development and in the phytoremediation when applied alone or in combination with PGPR. The combined effect of rhizobacteria and Ag nanoparticles in bioremediation has been reviewed in this chapter.


Phytoremediation Wastewater Silver nanoparticles PGPR 


Conflict of Interest

The authors declare no conflict of interest.


  1. 1.
    Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254PubMedCrossRefGoogle Scholar
  2. 2.
    Prasad SM, Singh A (2011) Metabolic responses of Azolla pinnata to cadmium stress: photosynthesis, antioxidative system and phytoremediation. Chem Ecol 27(6):543–555CrossRefGoogle Scholar
  3. 3.
    Vithanage M, Dabrowska BB, Mukherjee AB, Sandhi A, Bhattacharya P (2012) Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environ Chem Lett 10(3):217–224CrossRefGoogle Scholar
  4. 4.
    Mench M, Schwitzguébel JP, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16(7):876CrossRefGoogle Scholar
  5. 5.
    Aken BV, Correa PA, Schnoor JL (2009) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44(8):2767–2776CrossRefGoogle Scholar
  6. 6.
    Prasad MN (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50(5):686–701CrossRefGoogle Scholar
  7. 7.
    Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881CrossRefGoogle Scholar
  8. 8.
    Ji P, Sun T, Song Y, Ackland ML, Liu Y (2011) Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environ Pollut 159(3):762–768PubMedCrossRefGoogle Scholar
  9. 9.
    Favas PJ, Pratas J, Varun M, D’Souza R, Paul MS (2014) Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation. Sci Total Environ 470:993–1002PubMedCrossRefGoogle Scholar
  10. 10.
    Erakhrumen AA (2014) Potentials of Rhizophora racemosa for bio-indication and dendroremediation of heavy metal contamination in a mangrove forest, Ondo state, Nigeria. Nig J Agric Food Environ 10(4):1–5Google Scholar
  11. 11.
    Ghosh M, Singh S (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6(4):18Google Scholar
  12. 12.
    Sharma RK, Agrawal M, Marshall F (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf 66(2):258–266CrossRefGoogle Scholar
  13. 13.
    Pedrero F, Kalavrouziotis I, Alarcón JJ, Koukoulakis P, Asano T (2010) Use of treated municipal wastewater in irrigated agriculture—review of some practices in Spain and Greece. Agric Water Manag 97(9):1233–1241CrossRefGoogle Scholar
  14. 14.
    Reiss R, Mackay N, Habig C, Griffin J (2002) An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environ Toxicol Chem 21(11):2483–2492PubMedCrossRefGoogle Scholar
  15. 15.
    Back DD, Scaringe RP, Ramos C, Samad NA, Gann Sr SD, inventors; Mainstream Engineering Corporation, assignee (1999) Process and system for recycling and reusing gray water. United States patent US 5,868,937, 9 Feb 1999Google Scholar
  16. 16.
    Wu CD, Wei GX (2002) Tea as a functional food for oral health. Nutrition 18(5):443–444PubMedCrossRefGoogle Scholar
  17. 17.
    Otterpohl R, Braun U, Oldenburg M (2004) Innovative technologies for decentralised water-, wastewater and biowaste management in urban and peri-urban areas. Water Sci Technol 48(11–12):23–32CrossRefGoogle Scholar
  18. 18.
    Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interf Sci 193:24–34CrossRefGoogle Scholar
  19. 19.
    Gerba CP, Smith JE Jr (2005) Sources of pathogenic microorganisms and their fate during land application of wastes. J Environ Qual 34(1):42PubMedGoogle Scholar
  20. 20.
    Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377CrossRefGoogle Scholar
  21. 21.
    Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39(11–12):1857–1862CrossRefGoogle Scholar
  22. 22.
    Mapanda F, Mangwayana EN, Nyamangara J, Giller KE (2005) The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe. Agric Ecosyst Environ 107(2):151–165CrossRefGoogle Scholar
  23. 23.
    Okoh AI, Odjadjare EE, Igbinosa EO, Osode AN (2007) Wastewater treatment plants as a source of microbial pathogens in receiving watersheds. Afr J Biotechnol 6(25)Google Scholar
  24. 24.
    Elimelech M (2006) The global challenge for adequate and safe water. J Water Supply Res Technol AQUA 55(1):3–10CrossRefGoogle Scholar
  25. 25.
    Khan N, Bano A, Rahman MA, Rathinasabapathi B, Babar MA (2018) UPLC-HRMS-based untargeted metabolic profiling reveals changes in chickpea (Cicer arietinum) metabolome following long-term drought stress. Plant Cell Environ. Scholar
  26. 26.
    Jiménez B, Asano T (eds) (2008) Water reuse: an international survey of current practice, issues and needs. IWA, LondonGoogle Scholar
  27. 27.
    Pearce P (2004) Trickling filters for upgrading low technology wastewater plants for nitrogen removal. Water Sci Technol 49(11–12):47–52PubMedCrossRefGoogle Scholar
  28. 28.
    Buechler S, Mekala GD, Keraita B (2006) Wastewater use for urban and peri-urban agriculture. In: van Veenhuizen R (ed) Cities farming for the future: urban agriculture for green and productive cities. RUAF Foundation, The Netherlands, pp 243–273Google Scholar
  29. 29.
    Drechsel P, Keraita B, Amoah P, Abaidoo RC, Raschid-Sally L, Bahri A (2008) Reducing health risks from wastewater use in urban and peri-urban sub-Saharan Africa: applying the 2006 WHO guidelines. Water Sci Technol 57(9):1461–1466PubMedCrossRefGoogle Scholar
  30. 30.
    Das DC, Kaul RN (1992) Greening wastelands through wastewater. National Wasteland Development Board, Ministry of Environment and Forest, Government of India, New DelhiGoogle Scholar
  31. 31.
    Smit J, Nasr J, Ratta A (1996) Urban agriculture: food, jobs and sustainable cities, vol 2. The Urban Agriculture Network, Inc., New York, pp 35–37Google Scholar
  32. 32.
    Safary S, Hajrasoliha S (1995) Effects of North Isfahan sewage effluent on the soils of Borkhar region and composition of alfalfa. Paper presented at the 5th Soil Science Congress. Agricultural Vocational School, Karaj, IranGoogle Scholar
  33. 33.
    Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Crop Manag 3(1). Scholar
  34. 34.
    Mehboob I, Naveed M, Zahir ZA, Ashraf M (2012) Potential of rhizobia for sustainable production of non-legumes. In: Ashraf M, Öztürk M, Ahmad MSA, Aksoy A (eds) Crop production for agricultural improvement. Springer, Netherlands, pp 659–704CrossRefGoogle Scholar
  35. 35.
    Lemanceau P (1992) Beneficial effects of rhizobacteria on plants: example of fluorescent Pseudomonas spp.[plant growth promoting rhizobacteria, PGPR, microbial antagonism, siderophore, bacterial inoculation]. Agronomie.
  36. 36.
    Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12(4):133–141CrossRefGoogle Scholar
  37. 37.
    Zhang S, Moyne AL, Reddy MS, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25(3):288–296CrossRefGoogle Scholar
  38. 38.
    Liu WT, Nakamura K, Matsuo T, Mino T (1997) Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors—effect of PC feeding ratio. Water Res 31(6):1430–1438CrossRefGoogle Scholar
  39. 39.
    Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil 184(2):311–321CrossRefGoogle Scholar
  40. 40.
    Boddey RM, Urquiaga S, Alves BJ, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252(1):139–149CrossRefGoogle Scholar
  41. 41.
    Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, Van Berkum P, Moawad H et al (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158(1):219–224CrossRefGoogle Scholar
  42. 42.
    Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35(15):3144–3150PubMedCrossRefGoogle Scholar
  43. 43.
    Aafi NE, Brhada F, Dary M, Maltouf AF, Pajuelo E (2012) Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541. Int J Phytoremediation 14(3):261–274PubMedCrossRefGoogle Scholar
  44. 44.
    Rajkumar M, Vara Prasad MN, Freitas H, Ae N (2009) Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit Rev Biotechnol 29(2):120–130PubMedCrossRefGoogle Scholar
  45. 45.
    Soetan KO, Olaiya CO, Oyewole OE (2010) The importance of mineral elements for humans, domestic animals and plants-a review. Afr J Food Sci 4(5):200–222Google Scholar
  46. 46.
    Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750PubMedCrossRefGoogle Scholar
  48. 48.
    Masalha J, Kosegarten H, Elmaci Ö, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30(5):433–439CrossRefGoogle Scholar
  49. 49.
    Liao JP, Lin XG, Cao ZH, Shi YQ, Wong MH (2003) Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere 50(6):847–853PubMedCrossRefGoogle Scholar
  50. 50.
    Khan N, Bano A (2016) Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. Int J Phytoremediation 18(12):1258–1269PubMedCrossRefGoogle Scholar
  51. 51.
    Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Chibuike G, Obiora S (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci. Scholar
  53. 53.
    Nanda S, Abraham J (2013) Remediation of heavy metal contaminated soil. Afr J Biotechnol 12(21)Google Scholar
  54. 54.
    Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729CrossRefGoogle Scholar
  55. 55.
    Khan N, Bano A, Babar MA (2017) The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis 72(3):195–205CrossRefGoogle Scholar
  56. 56.
    Sharma RK, Archana G (2016) Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl Soil Ecol 107:66–78CrossRefGoogle Scholar
  57. 57.
    Rufykiri G, Thiry Y, Wang L, Delvaux B, Declerck S (2002) Uranium uptake and translocation by the arbuscular fungus, Glomus intraradices, under root-organ culture conditions. New Phytol 156(2):275–281CrossRefGoogle Scholar
  58. 58.
    Pozo MJ, Cordier C, Dumas-Gaudot E (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53(368):525–534PubMedCrossRefGoogle Scholar
  59. 59.
    Abu-Elsaoud AM, Nafady NA, Abdel-Azeem AM (2017) Arbuscular mycorrhizal strategy for zinc mycoremediation and diminished translocation to shoots and grains in wheat. PLoS One 12(11):e0188220PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ball P (2002) Natural strategies for the molecular engineer. Nanotechnology 13:15–28CrossRefGoogle Scholar
  61. 61.
    Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627PubMedCrossRefGoogle Scholar
  62. 62.
    Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381PubMedCrossRefGoogle Scholar
  63. 63.
    Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Agric Food 15(2):22–44Google Scholar
  64. 64.
    Hu Y, Xie J, Tong YW, Wang CH (2007) Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J Control Release 118(1):7–17PubMedCrossRefGoogle Scholar
  65. 65.
    Caruthers SD, Wickline SA, Lanza GM (2007) Nanotechnological applications in medicine. CurrOpinBiotechnol 18:26–30Google Scholar
  66. 66.
    Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170Google Scholar
  67. 67.
    Wang WN, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15(1):1417CrossRefGoogle Scholar
  68. 68.
    Da Silva EC, Da Silva MGA, Meneghetti SMP, Machado G, Alencar MARC, Hickmann JM, Meneghetti MR (2008) Synthesis of colloids based on gold nanoparticles dispersed in castor oil. J Nanopart Res 10(1):201–208CrossRefGoogle Scholar
  69. 69.
    Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104CrossRefGoogle Scholar
  70. 70.
    Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479PubMedCrossRefGoogle Scholar
  71. 71.
    Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246PubMedCrossRefGoogle Scholar
  72. 72.
    Nair R (2016) Effects of nanoparticles on plant growth and development. In: Kole C, Kumar D, Khodakovskaya M (eds) Plant nanotechnology. Springer, ChamGoogle Scholar
  73. 73.
    Mehta CM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6(2):254PubMedPubMedCentralGoogle Scholar
  74. 74.
    Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310. Scholar
  75. 75.
    Zuverza-Mena N, Armendariz R, Peralta-Videa JR, Gardea-Torresdey JL (2016) Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value. Front Plant Sci 7:90PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rizwan M, Singh M, Mitra CK, Morve RK (2014) Ecofriendly application of nanomaterials: nanobioremediation. J Nanoparticles. Scholar
  77. 77.
    Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng. Scholar
  78. 78.
    Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296(1–2):1–8CrossRefGoogle Scholar
  79. 79.
    Fernandes JP, Mucha AP, Francisco T, Gomes CR, Almeida CMR (2017) Silver nanoparticles uptake by salt marsh plants–implications for phytoremediation processes and effects in microbial community dynamics. Mar Pollut Bull 119(1):176–183PubMedCrossRefGoogle Scholar
  80. 80.
    Yadav KK, Singh JK, Gupta N, Kumar V (2017) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8:740–757Google Scholar
  81. 81.
    Jacob DL, Borchardt JD, Navaratnam L, Otte ML, Bezbaruah AN (2013) Uptake and translocation of Ti from nanoparticles in crops and wetland plants. Int J Phytoremediation 15(2):142–153PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Naeem Khan
    • 1
  • Asghari Bano
    • 2
  1. 1.Department of Plant SciencesQuaid-I-Azam UniversityIslamabadPakistan
  2. 2.Department of BiosciencesUniversity of WahWah CanttPakistan

Personalised recommendations