Advertisement

Sorption: Release Processes in Soil—The Basis of Phytoremediation Efficiency

  • G. PetruzzelliEmail author
  • M. Grifoni
  • M. Barbafieri
  • I. Rosellini
  • F. Pedron
Chapter

Abstract

The phytoremediation efficiency is influenced by contaminant bioavailability in soil, which in turn depends on soil properties. These last, together with rhizosphere processes, regulate the adsorption and release processes of heavy metals in soil.

The distribution of metals between solid and liquid soil phases following adsorption/release processes determines the metal amount bioavailable for plant uptake. The use of adsorption isotherms allows evaluating this distribution, in order to describe the soil ability to retain contaminants in the solid phase. The knowledge of sorption processes is of great importance for phytoremediation, since both the specific contaminated soil and the chosen plant species can largely influence the applicability of phytoremediation procedure at field scale. A case study is reported to evaluate adsorption experiments carried out in soils derived from contaminated site with a high heterogeneity of lead concentration. Results obtained by Freundlich equation have demonstrated the possibility of correlating the desorption parameters and the quantity of elements absorbed by the plants.

Keywords

Sorption Desorption Heavy metal Bioavailability Freundlich Langmuir Soil characteristics Plant uptake 

References

  1. 1.
    Paz-Alberto AM, Sigua GC (2013) Phytoremediation: a green technology to remove environmental pollutants. Am J Clim Change 2(01):71CrossRefGoogle Scholar
  2. 2.
    Pilon-Smits EAH (2005) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 56:15–39CrossRefGoogle Scholar
  3. 3.
    Petruzzelli G, Pedron F, Rosellini I, Grifoni M, Barbafieri M (2016) Polycyclic aromatic hydrocarbons and heavy metal contaminated sites: phytoremediation as a strategy for addressing the complexity of pollution. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation. Springer, Cham, pp 61–90Google Scholar
  4. 4.
    Cundy AB, Bardos RP, Church A, Puschenreiter M, Friesl-Hanl W, Müller I et al (2013) Developing principles of sustainability and stakeholder engagement for “gentle” remediation approaches: the European context. J Environ Manag 129:283–291CrossRefGoogle Scholar
  5. 5.
    Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185PubMedCrossRefGoogle Scholar
  6. 6.
    Franchi E, Agazzi G, Rolli E, Borin S, Marasco R, Chiaberge S et al (2016) Exploiting hydrocarbon-degrading indigenous bacteria for bioremediation and phytoremediation of a multicontaminated soil. Chem Eng Technol 39(9):1676–1684CrossRefGoogle Scholar
  7. 7.
    Schwitzguébel JP (2017) Phytoremediation of soils contaminated by organic compounds: hype, hope and facts. J Soils Sediments 17(5):1492–1502CrossRefGoogle Scholar
  8. 8.
    Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120CrossRefGoogle Scholar
  9. 9.
    Petruzzelli G, Pedron F, Rosellini I, Barbafieri M (2013) The bioavailability processes as a key to evaluate phytoremediation efficiency in metal-contaminated soils. In: Gupta DK (ed) Plant-based remediation processes. Springer, Berlin, pp 273–289CrossRefGoogle Scholar
  10. 10.
    Minguzzi C, Vergnano O (1948) Il contenuto di nichel nelle ceneri di Alyssum bertolonii. Atti Soc Tosc Sci Nat 55:49–74 ItalianGoogle Scholar
  11. 11.
    Evangelou MW, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68(6):989–1003PubMedCrossRefGoogle Scholar
  12. 12.
    Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2(1):5Google Scholar
  13. 13.
    Barbafieri M, Pedron F, Petruzzelli G, Rosellini I, Franchi E, Bagatin R et al (2017) Assisted phytoremediation of a multi-contaminated soil: investigation on arsenic and lead combined mobilization and removal. J Environ Manag 203:316–329CrossRefGoogle Scholar
  14. 14.
    Doumett S, Fibbi D, Azzarello E, Mancuso S, Mugnai S, Petruzzelli G et al (2011) Influence of the application renewal of glutamate and tartrate on Cd, Cu, Pb and Zn distribution between contaminated soil and Paulownia tomentosa in a pilot-scale assisted phytoremediation study. Int J Phytoremediation 13(1):1–17PubMedCrossRefGoogle Scholar
  15. 15.
    Pedron F, Petruzzelli G, Barbafieri M, Tassi E, Ambrosini P, Patata L (2011) Mercury mobilization in a contaminated industrial soil for phytoremediation. Commun Soil Sci Plant Anal 42(22):2767–2777CrossRefGoogle Scholar
  16. 16.
    Pedron F, Petruzzelli G, Barbafieri M, Tassi E (2013) Remediation of a mercury-contaminated industrial soil using bioavailable contaminant stripping. Pedosphere 23(1):104–111CrossRefGoogle Scholar
  17. 17.
    Petruzzelli G, Pedron F, Rosellini I, Barbafieri M (2015) The bioavailability processes as a key to evaluate phytoremediation efficiency. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation. Springer International Publishing, New York, pp 31–43Google Scholar
  18. 18.
    Van Gestel CA (2008) Physico-chemical and biological parameters determine metal bioavailability in soils. Sci Total Environ 406(3):385–395PubMedCrossRefGoogle Scholar
  19. 19.
    Pedron F, Grifoni M, Barbafieri M, Petruzzelli G, Rosellini I, Franchi E et al (2017) Applicability of a Freundlich-like model for plant uptake at an industrial contaminated site with a high variable arsenic concentration. Environments 4(4):67CrossRefGoogle Scholar
  20. 20.
    Petruzzelli G, Pedron F (2006) “Bioavailability” at heavy metal contaminated sites: a tool to select remediation strategies. Int Conf “Remediation of contaminated sites”, Rome, pp 1–8Google Scholar
  21. 21.
    Petruzzelli G, Pedron F, Rosellini I (2014) Effects of thiosulfate on the adsorption of arsenate on hematite with a view to phytoextraction. Res J Environ Earth Sci 6(6):326–332Google Scholar
  22. 22.
    Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T et al (2014) Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize? J Hazard Mater 266:141–166PubMedCrossRefGoogle Scholar
  23. 23.
    Robinson B, Bolan NS, Mahimairaja S, Clothier B (2006) Solubility, mobility and bioaccumulation of trace elements: abiotic processes in the rhizosphere. In: Prasad M, Sajwan K, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. CRC Press, London, pp 97–110Google Scholar
  24. 24.
    Petruzzelli G (1997) Soil sorption of heavy metals. In: Cheremisinoff PN (ed) Ecological issues and environmental impact assessment. Gulf Publishing Company, London, pp 145–174Google Scholar
  25. 25.
    Kim RY, Yoon JK, Kim TS, Yang JE, Owens G, Kim KR (2015) Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review. Environ Geochem Health 37(6):1041–1061PubMedCrossRefGoogle Scholar
  26. 26.
    Brallier S, Harrison RB, Henry CL, Dongsen X (1996) Liming effects on availability of Cd, Cu, Ni and Zn in a soil amended with sewage sludge 16 years previously. Water Air Soil Pollut 86(1–4):195–206CrossRefGoogle Scholar
  27. 27.
    McLaren RG, Swift RS, Williams JG (1981) The adsorption of copper by soil materials at low equilibrium solution concentrations. Eur J Soil Sci 32(2):247–256CrossRefGoogle Scholar
  28. 28.
    Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewerd EP et al (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch 60(3–4):190–198Google Scholar
  29. 29.
    Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A et al (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249(1):107–115CrossRefGoogle Scholar
  30. 30.
    Abdullah S, Sarem SM (2010) The potential of Chrysanthemum and Pelargonium for phytoextraction of lead - contaminated soils. J Civil Eng 4:409–416Google Scholar
  31. 31.
    Wang Q, Li Z, Cheng S, Wu Z (2010) Effects of humic acids on phytoextraction of Cu and Cd from sediment by Elodea nuttallii. Chemosphere 78(5):604–608PubMedCrossRefGoogle Scholar
  32. 32.
    Alloway BJ (1995) Soil processes and the behaviour of metals. In: Alloway BJ (ed) Heavy metals in soils. Blackie, GlasgowCrossRefGoogle Scholar
  33. 33.
    Brümmer GW (1986) Heavy metal species, mobility and availability. In: Bernhard M, Brinckman FE, Sadler PJ (eds) The importance of chemical ‘speciation’ in environmental processes. Dahlem Conference; 1984 Sept 2–7. Springer, Berlin, pp 169–192Google Scholar
  34. 34.
    McKenzie RM (1980) The adsorption of lead and other heavy metals on oxides of manganese and iron. Aust J Soil Res 18(1):61–73CrossRefGoogle Scholar
  35. 35.
    Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99(3):259–278PubMedCrossRefGoogle Scholar
  36. 36.
    Evans LJ (1989) Chemistry of metal retention by soils. Environ Sci Technol 23(9):1046–1056CrossRefGoogle Scholar
  37. 37.
    Cherlatchka R, Cambier P (2000) Influence of reducing conditions on solubility of trace metals in contaminated soils. Water Air Soil Pollut 118(1–2):143–167CrossRefGoogle Scholar
  38. 38.
    Jarvis SC, Jones LHP (1980) The contents and sorption of cadmium in some agricultural soils of England and Wales. Eur J Soil Sci 31(3):469–479CrossRefGoogle Scholar
  39. 39.
    Basta NT, Tabatabai MA (1992) Effect of cropping systems on adsorption of metals by soils: II. Effect of pH. Soil Sci 153:195–204CrossRefGoogle Scholar
  40. 40.
    Forbes EA, Posner AM, Quirk JP (1976) The specific adsorption of divalent Cd, Co, Cu, Pb and Zn on goethite. Eur J Soil Sci 27(2):154–166CrossRefGoogle Scholar
  41. 41.
    Tiller KG, Gerth J, Brümmer G (1984) The sorption of Cd, Zn and Ni by soil clay fractions: procedures for partition of bound forms and their interpretation. Geoderma 34(1):1–16CrossRefGoogle Scholar
  42. 42.
    Borda MJ, Sparks DL (2008) Kinetics and mechanisms of sorption/desorption in soils: a multi-scale assessment. In: Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of metals and metalloids in soil environments. Wiley, Hoboken, NJ, pp 97–168Google Scholar
  43. 43.
    Bradl HB (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277(1):1–18PubMedCrossRefGoogle Scholar
  44. 44.
    Sparks DL (2003) Environmental soil chemistry. Academic, San Diego, CACrossRefGoogle Scholar
  45. 45.
    Selim HM, Zhao K, Liao L, Xu J (2010) Adsorption/desorption kinetics of Zn in soils: influence of phosphate. In: Xu J, Huang PM (eds) Molecular environmental soil science at the interfaces in the earth’s critical zone. Springer, Berlin, pp 88–90CrossRefGoogle Scholar
  46. 46.
    Zhang H, Selim HM (2005) Kinetics of arsenate adsorption-desorption in soils. Environ Sci Technol 39(16):6101–6108PubMedCrossRefGoogle Scholar
  47. 47.
    Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5(2):212–223CrossRefGoogle Scholar
  48. 48.
    Ho YS, Porter JF, McKay G (2002) Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Pollut 141(1–4):1–33CrossRefGoogle Scholar
  49. 49.
    Shaheen SM, Tsadilas CD, Rinklebe J (2013) A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties. Adv Colloid Interf Sci 201:43–56CrossRefGoogle Scholar
  50. 50.
    Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22(2):249–275CrossRefGoogle Scholar
  51. 51.
    Pignatello JJ (2000) The measurement and interpretation of sorption and desorption rates for organic compounds in soil media. Adv Agron 69:1–73Google Scholar
  52. 52.
    Benhammou A, Yaacoubi A, Nibou L, Tanouti B (2005) Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies. J Colloid Interface Sci 282(2):320–326PubMedCrossRefGoogle Scholar
  53. 53.
    Fonseca B, Maio H, Quintelas C, Teixeira A, Tavares T (2009) Retention of Cr (VI) and Pb (II) on a loamy sand soil: kinetics, equilibria and breakthrough. Chem Eng J 152(1):212–219CrossRefGoogle Scholar
  54. 54.
    Perić J, Trgo M, Medvidović NV (2004) Removal of zinc, copper and lead by natural zeolite—a comparison of adsorption isotherms. Water Res 38(7):1893–1899PubMedCrossRefGoogle Scholar
  55. 55.
    Günay A, Arslankaya E, Tosun I (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J Hazard Mater 146(1–2):362–371PubMedCrossRefGoogle Scholar
  56. 56.
    Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol.  https://doi.org/10.5402/2011/402647CrossRefGoogle Scholar
  57. 57.
    Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34(20):4259–4265CrossRefGoogle Scholar
  58. 58.
    Hinsinger P (2011) Biogeochemical, biophysical, and biological processes in the rhizosphere. In: Huang PM, Li Y, Summer ME (eds) Handbook of soil science resource of management and environmental impacts, 2nd edn. CRC Press, Taylor & Francis, Boca Raton, FL, pp 1–30Google Scholar
  59. 59.
    Mench M, Martin E (1991) Mobilization of cadmium and other metals by roots exudates of Zea mays L. Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil 132(2):187–196CrossRefGoogle Scholar
  60. 60.
    Nigam R, Srivastava S, Prakash S, Srivastava MM (2001) Cadmium mobilisation and plant availability – the impact of organic acids commonly exuded from roots. Plant Soil 230(1):107–113CrossRefGoogle Scholar
  61. 61.
    Violante A, Caporale AG (2015) Biogeochemical processes at soil-root interface. J Soil Sci Plant Nutr 15(2):422–448Google Scholar
  62. 62.
    Zhu J, Pigna M, Cozzolino V, Caporale AG, Violante A (2011) Sorption of arsenite and arsenate on ferrihydrite: effect of organic and inorganic ligands. J Hazard Mater 189(1–2):564–571PubMedCrossRefGoogle Scholar
  63. 63.
    Zhu J, Pigna M, Cozzolino V, Caporale AG, Violante A (2013) Higher sorption of arsenate versus arsenite on amorphous Al-oxide, effect of ligands. Environ Chem Lett 11(3):289–294CrossRefGoogle Scholar
  64. 64.
    Thomas GW (1996) Soil pH and soil acidity. In: Sparks DL (ed) Methods of soil analysis. Part 3. Chemical methods, Soil Science Society of America Book Series. Soil Science Society of America Inc., Madison, pp 475–490Google Scholar
  65. 65.
    Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Sparks DL (ed) Methods of soil analysis. Part 3. Chemical methods, Soil Science Society of America Book Series. Soil Science Society of America Inc., Madison, pp 1201–1230Google Scholar
  66. 66.
    Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods, Agronomy monograph No. 9, 2nd edn. American Society of Agronomy, Soil Science Society of America, Madison, pp 383–411Google Scholar
  67. 67.
    Nelson DW, Sommers LE (1996) Total carbon, organic carbon and organic matter. In: Sparks DL (ed) Methods of soil analysis. Part 3. Chemical methods, Soil Science Society of America Book Series. Soil Science Society of America Inc., Madison, pp 961–1010Google Scholar
  68. 68.
    Pedron F, Rosellini I, Petruzzelli G, Barbafieri M (2014) Chelant comparison for assisted phytoextraction of lead in two contaminated soils. Res Environ 4(5):209–214Google Scholar
  69. 69.
    Holford ICR (1982) The comparative significance and utility of the Freundlich and Langmuir parameters for characterizing sorption and plant availability of phosphate in soils. Aust J Soil Res 20(3):233–242CrossRefGoogle Scholar
  70. 70.
    Shafqat MN, Pierzynski GM (2011) Bioavailable phosphorus in animal waste amended soils: using actual crop uptake and p mass balance approach. Environ Sci Technol 45(19):8217–8224PubMedCrossRefGoogle Scholar
  71. 71.
    Shafqat MN, Pierzynski GM (2014) The Freundlich adsorption isotherm constants and prediction of phosphorus bioavailability as affected by different phosphorus sources in two Kansas soils. Chemosphere 99:72–80PubMedCrossRefGoogle Scholar
  72. 72.
    Pedron F, Petruzzelli G, Barbafieri M, Tassi E (2009) Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Chemosphere 75(6):808–814PubMedCrossRefGoogle Scholar
  73. 73.
    Barbafieri M, Japenga J, Romkens P, Petruzzelli G, Pedron F (2013) Protocols for applying phytotechnologies in metal-contaminated soils. In: Gupta D (ed) Plant-based remediation processes. Springer, Berlin, pp 19–37CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • G. Petruzzelli
    • 1
    Email author
  • M. Grifoni
    • 1
  • M. Barbafieri
    • 1
  • I. Rosellini
    • 1
  • F. Pedron
    • 1
  1. 1.Institute of Ecosystem StudyCNRPisaItaly

Personalised recommendations