Advertisement

Phytoremediation as a Cleansing Tool for Nanoparticles and Pharmaceutical Wastes Toxicity

  • Fares K. KhalifaEmail author
  • Maha I. Alkhalf
Chapter

Abstract

Plants have an excellent potential to be explored in light of the phytoremediative properties they have. These plants uptake contaminants from natural resources like soil and water. Pollutants are directed toward differing mechanisms such as enzyme activity compartmentalization into plant-cell organelles. Heavy metals are pollutants which are epidemiologically studied and cover a major portion of contaminants through industrial waste. Another category of wastes is the pharmaceutical waste which has extensive harmful effects on human health. They come from improperly disposed antibiotics, hormones, and medicines. The hazardous effects of these contaminants can be interestingly explored to develop remediation against them.

Keywords

Phytoremediation Nanoparticles Pharmaceutical 

References

  1. 1.
    Ho YN, Shih CH, Hsiao SC, Huang CC (2009) A novel endophytic bacterium, Achromobacter xylosoxidans, helps plants against pollutant stress and improves phytoremediation. J Biosci Bioeng 108:S94CrossRefGoogle Scholar
  2. 2.
    Garbisu C, Allica JH, Barrutia O, Alkorta I, Becerril JM (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 17(3):173–188CrossRefGoogle Scholar
  3. 3.
    Macek T, Francova K, Kochánková L, Lovecká P, Ryslava E, Rezek J, Sura M, Triska J, Demnerova K, Mackova M (2004) Phytoremediation—biological cleaning of a polluted environment. Rev Environ Health 19(1):63–82CrossRefGoogle Scholar
  4. 4.
    Cortez PC (2005) Assessment and phytoremediation of heavy metals in the Panlasian creek. An unpublished high school thesis, University Science High School, Central Luzon State University, Science City of Muñoz, Nueva Ecija, PhilippinesGoogle Scholar
  5. 5.
    Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254CrossRefGoogle Scholar
  6. 6.
    Lee WY, Iannucci-Berger WA, Eitzer BD, White JC, Mattina MI (2003) Plant uptake and translocation of air-borne chlordane and comparison with the soil-to-plant route. Chemosphere 53(2):111–121CrossRefGoogle Scholar
  7. 7.
    Pereira RC, Camps-Arbestain M, Garrido BR, Macías F, Monterroso C (2006) Behaviour of α-, β-, γ-, and δ-hexachlorocyclohexane in the soil–plant system of a contaminated site. Environ Pollut 144(1):210–217CrossRefGoogle Scholar
  8. 8.
    Inui H, Wakai T, Gion K, Kim YS, Eun H (2008) Differential uptake for dioxin-like compounds by zucchini subspecies. Chemosphere 73(10):1602–1607CrossRefGoogle Scholar
  9. 9.
    Havelcová M, Melegy A, Rapant S (2014) Geochemical distribution of polycyclic aromatic hydrocarbons in soils and sediments of El-Tabbin, Egypt. Chemosphere 95:63–74CrossRefGoogle Scholar
  10. 10.
    Kirk JL, Klironomos JN, Lee H, Trevors JT (2005) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut 133(3):455–465CrossRefGoogle Scholar
  11. 11.
    Zhu X, Ni X, Liu J, Gao Y (2014) Application of endophytic bacteria to reduce persistent organic pollutants contamination in plants. Clean Soil Air Water 42(3):306–310CrossRefGoogle Scholar
  12. 12.
    Andria V, Reichenauer TG, Sessitsch A (2009) Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Environ Pollut 157(12):3347–3350CrossRefGoogle Scholar
  13. 13.
    Gambardella C, Costa E, Piazza V, Fabbrocini A, Magi E, Faimali M, Garaventa F (2015) Effect of silver nanoparticles on marine organisms belonging to different trophic levels. Mar Environ Res 111:41–49CrossRefGoogle Scholar
  14. 14.
    Nam DH, Lee BC, Eom IC, Kim P, Yeo MK (2014) Uptake and bioaccumulation of titanium-and silver-nanoparticles in aquatic ecosystems. Mol Cell Toxicol 10(1):9–17CrossRefGoogle Scholar
  15. 15.
    Klitzke S, Metreveli G, Peters A, Schaumann GE, Lang F (2015) The fate of silver nanoparticles in soil solution—sorption of solutes and aggregation. Sci Total Environ 535:54–60CrossRefGoogle Scholar
  16. 16.
    Metreveli G, Philippe A, Schaumann GE (2015) Disaggregation of silver nanoparticle homoaggregates in a river water matrix. Sci Total Environ 535:35–44CrossRefGoogle Scholar
  17. 17.
    Andreotti F, Mucha AP, Caetano C, Rodrigues P, Gomes CR, Almeida CM (2015) Interactions between salt marsh plants and Cu nanoparticles–effects on metal uptake and phytoremediation processes. Ecotoxicol Environ Saf 120:303–309CrossRefGoogle Scholar
  18. 18.
    Schaumann GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumann T, Lang F (2015) Understanding the fate and biological effects of Ag-and TiO 2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535:3–19CrossRefGoogle Scholar
  19. 19.
    Bissett A, Brown MV, Siciliano SD, Thrall PH (2013) Microbial community responses to anthropogenically induced environmental change: towards a systems approach. Ecol Lett 16(s1):128–139CrossRefGoogle Scholar
  20. 20.
    Deblonde T, Hartemann P (2013) Environmental impact of medical prescriptions: assessing the risks and hazards of persistence, bioaccumulation and toxicity of pharmaceuticals. Public Health 127(4):312–317CrossRefGoogle Scholar
  21. 21.
    Thiele‐Bruhn S (2003) Pharmaceutical antibiotic compounds in soils—a review. J Plant Nutr Soil Sci 166(2):145–167CrossRefGoogle Scholar
  22. 22.
    Herklotz PA, Gurung P, Heuvel BV, Kinney CA (2010) Uptake of human pharmaceuticals by plants grown under hydroponic conditions. Chemosphere 78(11):1416–1421CrossRefGoogle Scholar
  23. 23.
    Sedlak DL, Pinkston KE (2011) Factors affecting the concentrations of pharmaceuticals released to the aquatic environment. J Contemp Water Res Educ 120(1):7Google Scholar
  24. 24.
    Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39CrossRefGoogle Scholar
  25. 25.
    Onesios KM, Jim TY, Bouwer EJ (2009) Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation 20(4):441–466CrossRefGoogle Scholar
  26. 26.
    Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418CrossRefGoogle Scholar
  27. 27.
    Denton BP (2007) Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. MMG 445 Basic Biotechnol J 3(1):1–5Google Scholar
  28. 28.
    Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects & oxidative stress. Indian J Med Res 128(4):412PubMedGoogle Scholar
  29. 29.
    Iori V, Pietrini F, Zacchini M (2012) Assessment of ibuprofen tolerance and removal capability in Populus nigra L. by in vitro culture. J Hazard Mater 229:217–223CrossRefGoogle Scholar
  30. 30.
    Kotyza J, Soudek P, Kafka Z, Vaněk T (2010) Phytoremediation of pharmaceuticals—preliminary study. Int J Phytoremediation 12(3):306–316CrossRefGoogle Scholar
  31. 31.
    Cartinella JL, Cath TY, Flynn MT, Miller GC, Hunter KW, Childress AE (2006) Removal of natural steroid hormones from wastewater using membrane contactor processes. Environ Sci Technol 40(23):7381–7386CrossRefGoogle Scholar
  32. 32.
    Khan S, Afzal M, Iqbal S, Mirza MS, Khan QM (2013) Inoculum pretreatment affects bacterial survival, activity and catabolic gene expression during phytoremediation of diesel contaminated soil. Chemosphere 91(5):663–668CrossRefGoogle Scholar
  33. 33.
    Bound JP, Voulvoulis N (2005) Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. Environ Health Perspect 13(12):1705CrossRefGoogle Scholar
  34. 34.
    Oliveira V, Gomes N, Almeida A, Silva A, Simões MM, Smalla K, Cunha  (2014) Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria. Mol Ecol 23(6):1392–1404CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Biochemistry Department, Science Faculty, AlsolimaniaKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Biochemistry and Nutrition Department, Womens CollegeAin Shams UniversityCairoEgypt
  3. 3.Applied Biochemistry Department, Science FacultyUniversity of JeddahJeddahSaudi Arabia
  4. 4.Biochemistry Department, Science FacultyKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations