Impact of Engineered Nanoparticles on the Phytoextraction of Environmental Pollutants

  • Xingmao Ma
  • Xiaoxuan Wang


Phytoremediation has become a mainstream remediation technology for mildly contaminated soil and groundwater. Plants are at the core of this technology, and their ability to phytoextract various environmental pollutants dictates the performance of phytoremediation in many applications. Numerous previous studies have investigated the mechanisms of plant uptake and accumulation of a wide variety of environmental pollutants, ranging from organic compounds to heavy metals. In addition to the intrinsic properties of environmental pollutants and specific characteristics of the chosen plant species, phytoextraction is affected by various environmental factors including the presence of coexisting environmental pollutants. With the rapid advancement of nanotechnology and continued buildup of engineered nanoparticles (ENPs) in the environment, their potential impacts on plant uptake of coexisting environmental pollutants have attracted some attentions. Even though the investigation on the ENPs’ effects on phytoextraction of environmental pollutants is still in its fledging stage, available information indicates a strong effect of ENPs on plant uptake of co-present environmental pollutants. This chapter summarized most available results with regard to ENPs’ effects on the plant uptake of both organic compounds and heavy metals and discussed the potential mechanisms for the altered plant uptake of these environmental pollutants by ENPs. Finally, the chapter provided suggestions on some future research needs and discussed the implications of emerging ENPs on the performance of phytoremediation.


Engineered nanoparticles ENPs Phytoextraction Organic contaminants Heavy metals Plant uptake 


  1. 1.
    Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:11CrossRefGoogle Scholar
  2. 2.
    Conesa HM, Evangelou MWH, Robinson BH, Schulin R (2012) A critical view of current state of phytotechnologies to remediate soils: still a promising tool? Sci World J 2012:173829CrossRefGoogle Scholar
  3. 3.
    Jansson C, Wullschleger SD, Kalluri UC, Tuskan GA (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60(9):685–696CrossRefGoogle Scholar
  4. 4.
    Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77(3):229–236CrossRefGoogle Scholar
  5. 5.
    Bolan NS, Park JH, Robinson B, Naidu R, Huh KY (2011) Phytostabilization: a green approach to contaminant containment. In: Sparks DL (ed) Advances in agronomy, vol 112. Academic Press, New York, NY, pp 145–204Google Scholar
  6. 6.
    Bock C, Kolb M, Bokern M, Harms H, Mackova M, Chroma L et al (2002) Advances in phytoremediation: phytotransformation. NATO Sci Ser IV Earth Environ Sci 15:115–140Google Scholar
  7. 7.
    Ma XM, Burken JG (2003) TCE diffusion to the atmosphere in phytoremediation applications. Environ Sci Technol 37(11):2534–2539CrossRefGoogle Scholar
  8. 8.
    McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6(8):2226–2247CrossRefGoogle Scholar
  9. 9.
    Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176(1):20–30CrossRefGoogle Scholar
  10. 10.
    Nascimento CWA, Xing B (2006) Phytoextraction: a review on enhanced metal availability and plant accumulation. Sci Agric 63:299–311CrossRefGoogle Scholar
  11. 11.
    Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181CrossRefGoogle Scholar
  12. 12.
    Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4(2):118–138CrossRefGoogle Scholar
  13. 13.
    Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev Biol Plant 29(4):207–212CrossRefGoogle Scholar
  14. 14.
    Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32(21):3379–3385CrossRefGoogle Scholar
  15. 15.
    Alvarez-Fernandez A, Diaz-Benito P, Abadia A, Lopez-Millan AF, Abadia J (2014) Metal species involved in long distance metal transport in plants. Front Plant Sci 5:20CrossRefGoogle Scholar
  16. 16.
    Lux A, Martinka M, Vaculik M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62(1):21–37CrossRefGoogle Scholar
  17. 17.
    Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73(3):844–848CrossRefGoogle Scholar
  18. 18.
    Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:20Google Scholar
  19. 19.
    Ma X, Geisler-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061CrossRefGoogle Scholar
  20. 20.
    Kang H. (2010) A review of the emerging nanotechnology industry: materials, fabrications, and applicationsGoogle Scholar
  21. 21.
    Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282–289CrossRefGoogle Scholar
  22. 22.
    Roco MC (1999) Nanoparticles and nanotechnology research. J Nanopart Res 1(1):1–6CrossRefGoogle Scholar
  23. 23.
    Zheng X, Chen YG, Wu R (2011) Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environ Sci Technol 45(17):7284–7290CrossRefGoogle Scholar
  24. 24.
    Donovan AR, Adams CD, Ma Y, Stephan C, Eichholz T, Shi H (2016) Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Chemosphere 144:148–153CrossRefGoogle Scholar
  25. 25.
    Cassee FR, van Balen EC, Singh C, Green D, Muijser H, Weinstein J et al (2011) Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol 41(3):213–229CrossRefGoogle Scholar
  26. 26.
    Ebbs S, Bradfield S, Kumar P, White JC, Musante C, Ma X (2016) Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environ Sci Nano 3:114CrossRefGoogle Scholar
  27. 27.
    Hyung H, Fortner JD, Hughes JB, Kim J-H (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41(1):179–184CrossRefGoogle Scholar
  28. 28.
    Schwertfeger DM, Velicogna JR, Jesmer AH, Scroggins RP, Princz JI (2016) Single particle-inductively coupled plasma mass spectroscopy analysis of metallic nanoparticles in environmental samples with large dissolved analyte fractions. Anal Chem 88(20):9908–9914CrossRefGoogle Scholar
  29. 29.
    Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139CrossRefGoogle Scholar
  30. 30.
    Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186(1):1–15CrossRefGoogle Scholar
  31. 31.
    Perullini M, Bilmes SAA, Jobbágy M (2013) Cerium oxide nanoparticles: structure, applications, reactivity, and eco-toxicology. Nanomaterials: a danger or a promise? Springer, New York, NY, pp 307–333CrossRefGoogle Scholar
  32. 32.
    Rossi L, Zhang W, Schwab AP, Ma X (2017) Uptake, accumulation, and in planta distribution of coexisting cerium oxide nanoparticles and cadmium in Glycine max (L.) Merr. Environ Sci Technol 51(21):12815–12824CrossRefGoogle Scholar
  33. 33.
    Rossi L, Sharifan H, Zhang W, Schwab AP, Ma X (2018) Mutual effects and in planta accumulation of co-existing cerium oxide nanoparticles and cadmium in hydroponically grown soybean (Glycine max (L.) Merr.). Environ Sci Nano 5:150CrossRefGoogle Scholar
  34. 34.
    Ma XM, Wang C (2010) Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Environ Eng Sci 27(11):989–992CrossRefGoogle Scholar
  35. 35.
    De La Torre-Roche R, Hawthorne J, Deng YQ, Xing BS, Cai WJ, Newman LA et al (2012) Fullerene-enhanced accumulation of p,p′-DDE in agricultural crop species. Environ Sci Technol 46(17):9315–9323Google Scholar
  36. 36.
    De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA et al (2013a) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47(21):12539–12547Google Scholar
  37. 37.
    De La Torre-Roche R, Hawthorne J, Musante C, Xing BS, Newman LA, Ma XM et al (2013b) Impact of Ag nanoparticle exposure on p,p′-DDE bioaccumulation by Cucurbita pepo (Zucchini) and glycine max (Soybean). Environ Sci Technol 47(2):718–725Google Scholar
  38. 38.
    Zhang HY, Liu Y, Shen XF, Zhang M, Yang Y, Tao S et al (2017) Influence of multiwalled carbon nanotubes and sodium dodecyl benzene sulfonate on bioaccumulation and translocation of pyrene and 1-methylpyrene in maize (Zea mays) seedlings. Environ Pollut 220:1409–1417CrossRefGoogle Scholar
  39. 39.
    Hamdi H, De La Torre-Roche R, Hawthorne J, White JC (2015) Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.). Nanotoxicology 9(2):172–180CrossRefGoogle Scholar
  40. 40.
    Deng YQ, Eitzer B, White JC, Xing BS (2017) Impact of multiwall carbon nanotubes on the accumulation and distribution of carbamazepine in collard greens (Brassica oleracea). Environ Sci Nano 4(1):149–159CrossRefGoogle Scholar
  41. 41.
    Wu J, Xie YY, Fang ZQ, Cheng W, Tsang PE (2016) Effects of Ni/Fe bimetallic nanoparticles on phytotoxicity and translocation of polybrominated diphenyl ethers in contaminated soil. Chemosphere 162:235–242CrossRefGoogle Scholar
  42. 42.
    Lopez-Luna J, Silva-Silva MJ, Martinez-Vargas S, Mijangos-Ricardez OF, Gonzalez-Chavez MC, Solis-Dominguez FA et al (2016) Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior. Sci Total Environ 565:941–950CrossRefGoogle Scholar
  43. 43.
    Tassi E, Giorgetti L, Morelli E, Peralta-Videa JR, Gardea-Torresdey JL, Barbafieri M (2017) Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO2 and excess boron: modulation of boron phytotoxicity. Plant Physiol Biochem 110:50–58CrossRefGoogle Scholar
  44. 44.
    Zhang WL, Dan YB, Shi HL, Ma XM (2016) Effects of aging on the fate and bioavailability of cerium oxide nanoparticles to radish (Raphanus sativus L.) in soil. ACS Sustain Chem Eng 4(10):5424–5431CrossRefGoogle Scholar
  45. 45.
    Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC et al (2017) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69CrossRefGoogle Scholar
  46. 46.
    Ji Y, Zhou Y, Ma CX, Feng Y, Hao Y, Rui YK et al (2017) Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol Biochem 110:82–93CrossRefGoogle Scholar
  47. 47.
    Jackson P, Jacobsen NR, Baun A, Birkedal R, Kuhnel D, Jensen KA et al (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7:21CrossRefGoogle Scholar
  48. 48.
    Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43(14):5290–5294CrossRefGoogle Scholar
  49. 49.
    Wang Y, Peng C, Fang HX, Sun LJ, Zhang H, Feng JB et al (2015) Mitigation of Cu(II) phytotoxicity to rice (Oryza sativa) in the presence of TiO2 and CeO2 nanoparticles combined with humic acid. Environ Toxicol Chem 34(7):1588–1596CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Zachry Department of Civil EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations