Dendroremediation: The Role of Trees in Phytoextraction of Trace Elements

  • Mirosław MleczekEmail author
  • Monika Gąsecka
  • Janina Kaniuczak
  • Piotr Goliński
  • Małgorzata Szostek
  • Zuzanna Magdziak
  • Paweł Rutkowski
  • Sylwia Budzyńska


It is well known—almost a truism—that contamination of the environment (especially soil) and the impacts of this contamination on animals and humans is a major worldwide problem. Phytoextraction is one of the methods that can be applied for soil reclamation and can lead to improvement. The general tendency in transport of metals to particular tree organs and their accumulation there is as follows: roots > leaves > stem. Vertical distribution of metals in trees depends both on the kind of element and tree species. The mobility and bioavailability of trace elements depends on several soil factors, e.g., pH; organic matter content; soil granulation; content of iron, manganese, and aluminum oxides; cation exchange capacity; water properties; contaminating metal; soil salinity; and soil biological properties. The potential of trees and bushes is mainly related to their ability to uptake elements from soil, followed by their possible transport and accumulation in aerial plant parts. Phytoextraction is limited to selected elements only.

Experimental research conducted on fields contaminated with heavy metals in phytoremediation and phytoextraction studies provide an excellent training ground from which to observe and investigate plant response to metal exposure in defense mechanisms and tolerance. The published literature indicates that dendroremediation may have great potential for the remediation of areas contaminated with metals.


Environmental factors Organic acids Phenolics Phytoextraction Soil Trace elements Tree species 


  1. 1.
    Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142CrossRefGoogle Scholar
  2. 2.
    Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals – concepts and applications. Chemosphere 91:869–881CrossRefGoogle Scholar
  3. 3.
    Baldantoni D, Cicatelli A, Bellino A, Castiglione S (2014) Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements. J Environ Manag 146:94–99CrossRefGoogle Scholar
  4. 4.
    Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721PubMedCrossRefGoogle Scholar
  5. 5.
    Ernst WHO (2006) Evolution of metal tolerance in higher plants. For Snow Landsc Res 80:251–274Google Scholar
  6. 6.
    Kabata-Pendias A (2001) Trace elements in soils and plants, 3rd edn. CRC Press, LondonGoogle Scholar
  7. 7.
    Bothe H, Słomka A (2017) Divergent biology of facultative heavy metals plants. J Plant Physiol 219:45–61PubMedCrossRefGoogle Scholar
  8. 8.
    Ahmad W, Najeeb U, Zia MH (2015) Soil contamination with metals: sources, types and implications. In: Soil remediation and plants. Elsevier, London, pp 37–61CrossRefGoogle Scholar
  9. 9.
    Alvarez A, Catalano SA, Amoroso MJ (2013) Heavy metal resistant strains are widespread along Streptomyces phylogeny. Mol Phylogenet Evol 66:1083–1088PubMedCrossRefGoogle Scholar
  10. 10.
    Barančíková G, Makovníková J (2003) The influence of humic acid quality on the sorption and mobility of heavy metals. Plant Soil Environ 49:565–571CrossRefGoogle Scholar
  11. 11.
    Pourret O, Davranche M, Gruau G, Dia A (2007) Rare earth elements complexation with humic acid. Chem Geol 243:128–141CrossRefGoogle Scholar
  12. 12.
    Kabata-Pendias A (2004) Soil-plant transfer of trace elements – an environmental issue. Geoderma 122:143–149CrossRefGoogle Scholar
  13. 13.
    Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2:1–25Google Scholar
  14. 14.
    Xiao L, Guan D, Peart MR, Chen Y, Li Q, Dai J (2017) The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain. Chemosphere 185:868–878PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Xu Y, Liang X, Xu Y, Qin X, Huang Q, Wang L, Sun Y (2017) Remediation of heavy metal-polluted agricultural soils using clay minerals: a review. Pedosphere 27:193–204CrossRefGoogle Scholar
  16. 16.
    Sheoran V, Sheoran AS, Poonia P (2016) Factors affecting phytoextraction: a review. Pedosphere 26:148–166CrossRefGoogle Scholar
  17. 17.
    Jović M, Šljivić-Ivanović M, Dimović S, Marković J, Smičiklas I (2017) Sorption and mobility of Co(II) in relation to soil properties. Geoderma 297:38–47CrossRefGoogle Scholar
  18. 18.
    Kushwaha A, Hans N, Kumar S, Rani R (2018) A critical review on speciation, mobilization and toxicity of lead in soil microbe-plant system and bioremediation strategies. Ecotox Environ Safe. 147:1035–1045CrossRefGoogle Scholar
  19. 19.
    Wyszkowska J, Borowik A, Kucharski M, Kucharski J (2003) Effect of cadmium, copper and zinc on plants, soils microorganisms and soil enzymes. J Elem 18:769–796Google Scholar
  20. 20.
    Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185CrossRefGoogle Scholar
  21. 21.
    Skiba S (2002) Gleba w środowisku przyrodniczym [Soil in the natural environment]. In: Barabasz W (ed) Aktywność drobnoustrojów w różnych środowiskach [Microbial activity in various environments]. Wydawnictwo AR w Krakowie, Drukrol, pp 157–170 (in Polish)Google Scholar
  22. 22.
    Antoniadis V, Levizou E, Shaheen SM, Ok YS, Sebastian A, Baum C et al (2017) Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation – a review. Earth-Sci Rev 171:621–645CrossRefGoogle Scholar
  23. 23.
    Fijałkowski K, Kacprzak M, Grobelak A, Placek A (2012) The influence of selected soil parameters on the mobility of heavy metals in soils. Inżynieria i Ochrona Środowiska 15:81–92Google Scholar
  24. 24.
    Bartkowiak A, Lemanowicz J, Hulisz P (2017) Ecological risk assessment of heavy metals in salt-affected soils in the Natura 2000 area (Ciechocinek, north-central Poland). Environ Sci Pollut Res 24:27175–27187CrossRefGoogle Scholar
  25. 25.
    Li H, Ji H, Shi C, Gao Y, Zhang Y, Xu X, Ding H, Tang L, Xing Y (2017) Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health. Chemosphere 172:505–515PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Acosta JA, Jansen B, Kalbitz K, Faz A, Martinez-Martinez S (2011) Salinity increases mobility of heavy metals in soils. Chemosphere 85:1318–1324PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Dziamski A, Gonet SS, Debska B (2005) Properties of humus in reaction to soil particle size fraction. Scientific papers, vol 692. University of Lativia, Latvia, pp 29–37Google Scholar
  28. 28.
    Dexter AR (2004) Soil physical quality part I. Theory, effects of soil texture, density and organic matter, and effects on root growth. Geoderma 120:201–214CrossRefGoogle Scholar
  29. 29.
    Dexter AR, Richard G, Czyż EA, Jolivet C, Duval O (2008) Complexed organic matter controls soil physical properties. Geoderma 144:620–627CrossRefGoogle Scholar
  30. 30.
    Ilek A, Kucza J, Szostek M (2017) The effect of the bulk density and the decomposition index of organic matter on the water storage capacity of the surface layers of forest soil. Geoderma 285:27–34CrossRefGoogle Scholar
  31. 31.
    Hajduk E, Kaniuczak J (2014) Microelements in soils and in leaves of selected tree species in an industrial urban area. J Elem 19:1001–1020Google Scholar
  32. 32.
    Coles CA, Yong RN (2006) Humic acid preparation, properties and interactions with metals lead and cadmium. Eng Geology 85:26–32CrossRefGoogle Scholar
  33. 33.
    Gucwa-Przepióra E, Nadgórska-Socha A, Fojcik B, Chmura D (2016) Enzymatic activities and arbuscular mycorrhizal colonization of Plantago lanceolata and Plantago major in a soil root zone under heavy metal stress. Environ Sci Pollut Res 23:4742–4755CrossRefGoogle Scholar
  34. 34.
    Antoniadis V, Golia EE (2015) Sorption of Cu and Zn in low organic matter-soils as influenced by soil properties and by the degree of soil weathering. Chemosphere 138:364–369PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kantek K, Karczewska A (2012) Effect of sewage sludge on the solubility of arsenic in soils contaminated by the arsenic industry in Złoty Stok. Zesz Nauk UP Wroc, Rol CIII 589:135–146Google Scholar
  36. 36.
    Karczewska A, Galka B, Dradrach A, Lewińska K, Molczan M, Cuske M, Gersztyn L, Litak K (2017) Solubility of arsenic and its uptake by ryegrass from polluted soils amended with organic matter. J Geochem Explor 182:193–200CrossRefGoogle Scholar
  37. 37.
    Kwiatkowska-Malina J, Maciejewska A (2011) The uptake of heavy metals by plants at differentiated soil reaction and content of organic matter. Ochrona Środowiska i Zasobów Naturalnych 49:43–51Google Scholar
  38. 38.
    Alverez-Puebla RA, Valezuela-Calahorro C, Garrido JJ (2004) Cu(II) retention on a humic substance. J Colloid Interf Sci 270:47–55CrossRefGoogle Scholar
  39. 39.
    Kononowa M (1968) Soil organic substances, their structure, properties and test methods. Państwowe Wydawnictwo Rolnicze i Leśne (in Polish)Google Scholar
  40. 40.
    Wang S, Mulligan CN (2009) Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid. Chemosphere 74:274–279PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Özkaraova Güngör EB, Bekbölet M (2010) Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption. Geoderma 159:131–138CrossRefGoogle Scholar
  42. 42.
    Gonet SS, Dębska B, Pakuła J (2002) The content of dissolved organic carbon in soils and organic fertilizers. Polish Humic Substances Society, Wrocław (in Polish)Google Scholar
  43. 43.
    Cuske M, Karczewska A (2016) Influence of organic matter on the solubility of heavy metals in contaminated soils – a review of literature. Inżynieria Środowiska 42:39–59 (in Polish)Google Scholar
  44. 44.
    Suda A, Makino T (2016) Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: a review. Geoderma 270:68–75CrossRefGoogle Scholar
  45. 45.
    Caporale AG, Violante A (2016) Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Curr Pollut Rep 2:15–27CrossRefGoogle Scholar
  46. 46.
    Walczak R, Ostrowski J (2004) Parameterization and spatial characteristics of hydrophysical properties of mineral soil in Poland. Water Environ Rural Areas 4:175–184 (in Polish)Google Scholar
  47. 47.
    Nowińska K, Adamczyk Z (2013) Mobilność pierwiastków towarzyszących odpadom hutnictwa cynku i ołowiu w środowisku. [The mobility of accompanying elements to wastes from metallurgy of the zinc and the leadon in the environment]. Górnictwo i Geologia 8:77–87 (in Polish)Google Scholar
  48. 48.
    Angle JS, Baker AJM, Whiting SN, Chaney RL (2003) Soil moisture effects on uptake of metals by Thlaspi Alyssum, and Berkheya. Plant Soil 256:325–332CrossRefGoogle Scholar
  49. 49.
    Gronflaten LK, Steinnes E (2005) Comparison of four extraction methods to assess plant availability of some metals in organic forest soils. Commun Soil Sci Plan 36:2699–2718CrossRefGoogle Scholar
  50. 50.
    Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159:84–91PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Karczewska A (2002) Metale ciężkie w glebach zanieczyszczonych emisjami hut miedzi – formy i rozpuszczalność[dissertation] [Heavy metals in soils polluted by emissions from copper smelters – forms and solubility]. Agriculture University in Wroclaw (in Polish)Google Scholar
  52. 52.
    Kaniuczak J, Hajduk E, Właśniewski S (2011) Effect of liming and mineral fertilization on cadmium content in grain of spring barley (Hordeum vulgare L.) and winter wheat (Triticum aestivum L.) cultivated on loessial soil. J Elem 16:535–542Google Scholar
  53. 53.
    Krysiak A, Karczewska A (2011) Effects of soil flooding on arsenic mobility in soils in the area of former gold and arsenic mining in Złoty Stok. Roczniki Gleboznawcze 62:240–248Google Scholar
  54. 54.
    Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Siddikee MA, Tipayno SC, Kim K, Chung J, Sa T (2011) Influence of varying degree of salinity–sodicity stress on enzyme activities and bacterial populations of coastal soils of Yellow Sea, South Korea. J Microbiol Biotechnol 21(4):341–346PubMedPubMedCentralGoogle Scholar
  56. 56.
    Telesiński A (2012) The effect of salinity on some biochemical indices of soil fertility. Water Environ Rural Areas 12:209–217Google Scholar
  57. 57.
    Nouri H, Chavoshi Borujeni S, Nirola R, Hassanli A, Beecham S, Alaghmand S, Saint C, Mulcahy D (2017) Application of green remediation on soil salinity treatment: a review on halophytoremediation. Process Safe Environ Prot 107:94–107CrossRefGoogle Scholar
  58. 58.
    Filipović L, Romić M, Romić D, Filipović V, Ondrašek G (2018) Organic matter and salinity modify cadmium soil (phyto)availability. Ecotox Environ Safe 147:824–831CrossRefGoogle Scholar
  59. 59.
    Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Mohammadian E, Ahari AB, Arzanlou M, Oustan S, Khazaei SH (2017) Tolerance to trace elements in filamentous fungi isolated from contaminated mining soils in the Zanjan Province, Iran. Chemosphere 185:290–296PubMedCrossRefGoogle Scholar
  61. 61.
    Kucharski J, Wieczorek K, Wyszkowska J (2011) Changes in the enzymatic activity in sandy loam soil exposed to zinc pressure. J Elementol 16:577–589Google Scholar
  62. 62.
    Lenart-Boroń A, Boroń T, Banach T (2013) The effect of the selected heavy metals on the growth and proliferation of Streptomyces spp. Isolated from soils. Inżynieria i Ochrona Środowiska 16:81–91Google Scholar
  63. 63.
    Li M, Cheng X, Guo H (2013) Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int Biodeter Biodegr 76:81–85CrossRefGoogle Scholar
  64. 64.
    Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize?J Hazard Mater 266:141–166PubMedGoogle Scholar
  65. 65.
    Jing Y, Cui H, Li T, Zhao Z (2014) Heavy metal accumulation characteristics of Nepalese alder (Alnus nepalensis) growing in a lead-zinc spoil heap, Yunnan, Southwestern China. IForest 7:204–208CrossRefGoogle Scholar
  66. 66.
    Figurska-Ciura D, Łoźna K, Styczyńska M (2007) Cadmium, lead, zinc and copper contents in selected vegetables and fruit from garden allotments of the South – Western Poland, vol 57, pp 137–143Google Scholar
  67. 67.
    Interstate Technology and Regulatory Cooperation Work Group (ITRC) (1999) Phytoremediation decision tree.
  68. 68.
    Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu IGC (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Lit Arts Am 3:71–90Google Scholar
  69. 69.
    Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138CrossRefGoogle Scholar
  70. 70.
    Pajević S, Borišev M, Nikolić N, Arsenov DD, Orlović S, Župunski M (2016) Phytoextraction of heavy metals by fast—growing trees: a review. In: Ansari AA, Gill SS, Gill R, Lanza G, Newman L (eds) Phytoremediation. Management of environmental contaminants. Springer, Cham, pp 29–64Google Scholar
  71. 71.
    Bednarek W, Tkaczyk P, Dresler S (2007) Contents of heavy metals as a criterion for apple quality assessment and soil properties. Polish J Soil Sci 40:47–56Google Scholar
  72. 72.
    Tošić S, Alagić S, Dimitrijević M, Pavlović A, Nujkić M (2016) Plant parts of the apple tree (Malus spp.) as possible indicators of heavy metal pollution. Ambio 45:501–512PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Bošković-Rakočević L, Milivojević J, Milošević T, Paunović G (2014) Heavy metal content of soils and plum orchards in an uncontaminated area. Water Air Soil Pollut 225:2199CrossRefGoogle Scholar
  74. 74.
    Chrabąszcz M, Mróz L (2017) Tree Bark, a valuable source of information on air quality. Polish J Environ Stud 26:453–466CrossRefGoogle Scholar
  75. 75.
    Parzych A, Jonczak J (2014) Pine needles (Pinus sylvestris L.) as bioindicators in the assessment of urban environmental contamination with heavy metals. J Ecol Eng 15:29–38Google Scholar
  76. 76.
    Yoon J, Cao XD, Zhou QX, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464PubMedCrossRefGoogle Scholar
  77. 77.
    Pinto AP, de Varennes A, Lopes ME, Teixeira DM (2016) Biological approaches for remediation of metal-contaminated sites. In: Ansari AA, Gill SS, Gill R, Lanza G, Newman L (eds) Phytoremediation. Management of environmental contaminants. Springer, Cham, pp 65–112Google Scholar
  78. 78.
    Parzych A, Jonczak J (2013) Content of heavy metals in needles of scots pine (Pinus sylvestris L.) in selected pine forests in Słowiński National Park. Arch Environ Prot 39:41–51CrossRefGoogle Scholar
  79. 79.
    Mleczek M, Rissmann I, Rutkowski P, Kaczmarek Z, Golinski P (2009) Accumulation of selected heavy metals by different genotypes of Salix. Environ Exp Bot 66(2):289–296CrossRefGoogle Scholar
  80. 80.
    Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees – a review. Environ Int 29:529–540PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Mleczek M, Goliński P, Krzesłowska M, Gąsecka M, Magdziak Z, Rutkowski P, Budzyńska S, Waliszewska B, Kozubik T, Karolewski Z, Niedzielski P (2017) Phytoextraction of potentially toxic elements by six tree species growing on hazardous mining sludge. Environ Sci Pollut Res 24:22183–22195CrossRefGoogle Scholar
  82. 82.
    Budzyńska S, Mleczek M, Goliński P, Rutkowski P, Niedzielski P (2017) The influence of As forms in substrate on the phytoextraction of this metalloid in Ulmus laevis Pall organs – pot experiment. Microchem J 132:333–340CrossRefGoogle Scholar
  83. 83.
    Majid NM, Islam MM, Mathew L (2012) Heavy metal uptake and translocation by mangium (Acacia mangium) from sewage sludge contaminated soil. Aust J Crop Sci 6:1228–1235Google Scholar
  84. 84.
    Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334CrossRefGoogle Scholar
  85. 85.
    Van Nevel L, Martens J, Staelens J, De Schrijver A, Tack FMG, De Neve S, Meers E, Verheyen K (2011) Elevated Cd and Zn uptake by aspen limits the phytostabilization potential compared to five other tree species. Ecol Eng 37:1072–1080CrossRefGoogle Scholar
  86. 86.
    Hu Y, Nan Z, Su J, Wang N (2013) Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination: implications for phytoextraction and phytostabilization. Environ Sci Pollut Res Int 20:7194–7203PubMedCrossRefGoogle Scholar
  87. 87.
    Evangelou MWH, Robinson BH, Günthardt-Goerg MS, Schulin R (2013) Metal uptake and allocation in trees grown on contaminated land: implications for biomass production. Int J Phytoremediation 15:77–90PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Sylvain B, Mikael MH, Floride M, Emmanuel J, Marilyne S, Sylvain B, Domenico M (2016) Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols. Catena 136:44–52CrossRefGoogle Scholar
  89. 89.
    Mertens J, Vervaeke P, Schrijver AD, Luyssaert S (2004) Metal uptake by young trees from dredged brackish sediment: limitations and possibilities for phytoextraction and phytostabilization. Sci Total Environ 326:209–215PubMedCrossRefGoogle Scholar
  90. 90.
    Majid NM, Islam MM, Justin V, Abdu A, Ahmadpour P (2011) Evaluation of heavy metal uptake and translocation by Acacia mangium as a phytoremediator of copper contaminated soil. Afr J Biotechnol 10:8373–8379CrossRefGoogle Scholar
  91. 91.
    Qados AMSA (2015) Phytoremediation of Pb and Cd by native tree species grown in the Kingdom of Saudi Arabia. Int Res J Agri Sci Soil Sci 6:8–21Google Scholar
  92. 92.
    Shi X, Chen YT, Wang SF, Pan HW, Sun HJ, Liu CX et al (2016) Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings. Int J Phytoremediation 18:1155–1163PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Rosselli W, Keller C, Boshi K (2003) Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 256:265–272CrossRefGoogle Scholar
  94. 94.
    Wang X, Jia Y (2010) Study on adsorption and remediation of heavy metals by poplar and larch in contaminated soil. Environ Sci Pollut Res 17:1331–1338CrossRefGoogle Scholar
  95. 95.
    Čudić V, Stojiljković D, Jovović A (2016) Phytoremediation potential of wild plants growing on soil contaminated with heavy metals. Arch Hig Rada Toxicol 67:229–239Google Scholar
  96. 96.
    Erakhrumen AA (2015) Assessment of in-situ natural dendroremediation capability of Rhizophora racemosa in a heavy metal polluted mangrove forest, River State, Nigeria. J Appl Sci Environ Manage 19:21–27Google Scholar
  97. 97.
    Yu XZ, Gu JD, Xing LQ (2008) Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willows. Ecotoxicology 17:747–755PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Alcantara-Martinez N, Guizar S, Rivera-Cabrera F, Anicacio-Acevedo BE, Buendia-Gonzalez F, Volke-Sepulveda T (2016) Tolerance, arsenic uptake, and oxidative stress in Acacia farnesiana under arsenate-stress. Int J Phytoremediation 18:671–678PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Anawar HM, Damon P, Rengel Z, Jasper D, Tibbett M (2016) Alleviating arsenic toxicity to plants in a simulated cover system with phosphate placement in topsoil and subsoil. In: Fourie AB, Tibbett M (eds) Proceedings of the 11th international conference on mine closure; 2016. Australian Centre for Geomechanics, Crawley, pp 555–565Google Scholar
  100. 100.
    Kirkey FM, Matthews J, Ryser P (2012) Metal resistance in populations of red maple (Acer rubrum L.) and white birch (Betula papyrifera Marsh.) from a metal-contaminated region and neighbouring non-contaminated regions. Environ Pollut 164:53–58PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Dmuchowski W, Gozdowski D, Brągoszewska P, Baczewska AH, Suwara I (2014) Phytoremediation of zinc contaminated soil using silver birch (Betula pendula Roth). Ecol Eng 71:32–35CrossRefGoogle Scholar
  102. 102.
    Bergqvist C, Greger M (2012) Arsenic accumulation and speciation in plants from different habitats. Appl Geochem 27:615–622CrossRefGoogle Scholar
  103. 103.
    Hassinen V, Vallinkoski VM, Issakainen S, Tervahauta A, Kärenlampi S, Servomaa K (2009) Correlation of foliar MT2b expression with Cd and Zn concentrations in hybrid aspen (Populus tremula x tremuloides) grown in contaminated soil. Environ Pollut 157:922–930PubMedCrossRefGoogle Scholar
  104. 104.
    Shi X, Wang S, Sun H, Chen Y, Wang D, Pan H et al (2017) Comparative of Quercus spp. and Salix spp. for phytoremediation of Pb/Zn mine tailings. Environ Sci Pollut Res 24:3400–3411CrossRefGoogle Scholar
  105. 105.
    Venturas M, Fernández V, Nadal P, Guzmán P, Lucena JJ, Gil L (2014) Root iron uptake efficiency of Ulmus laevis and U. minor and their distribution in soils of the Iberian Peninsula. Front Plant Sci 5:104PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Gomes MP, Duarte DM, Miranda PL, Barreto LC, Matheus MT, Garcia QS (2012) The effects of arsenic on the growth and nutritional status of Anadenanthera peregrina, a Brazilian savanna tree. J Plant Nutr Soil Sci 175:466–473CrossRefGoogle Scholar
  107. 107.
    Makgalaka-Matlala NS, Flores-Tavizón E, Castillo-Michel H, Peralta-Videa JR, Torresdey JD (2008) Toxicity of arsenic (III) and (V) on plant growth, element uptake, and total amylolytic activity of mesquite (Prosopis Juliflora x P. Velutina). Int J Phytoremediation 10:47–60CrossRefGoogle Scholar
  108. 108.
    Erakhrumen AA (2014) Potentials of Rhizophora racemosa for bio-indication and dendroremediation of heavy metal contamination in a mangrove forest, Ondo State. Nig J Agric Food Environ 10:1–5Google Scholar
  109. 109.
    Ang LH, Tang LK, Ho WM, Hui TF, Theseira GW (2010) Phytoremediation of Cd and Pb by four tropical timber species grown on an ex-tin min in Peninsular Malaysia. Int J Environ Ecol Eng 4:70–74Google Scholar
  110. 110.
    Zacchini M, Pietrini F, Bianconi D, Iori V, Congiu M, Mughini G et al (2011) Physiological and biochemical characterisation of Eucalyptus hybrid clones treated with cadmium in hydroponics: perspectives for the phytoremediation of polluted waters. In:Book of Abstracts 5th European Bioremediation Conference. Technical University of Creta, ChaniaGoogle Scholar
  111. 111.
    Yanqun Z, Yuan L, Schvartz C, Langlade L, Fan L (2004) Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. Environ Int 30:567–576PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Larios R, Fernández-Martínez R, LeHecho I, Rucandio I (2012) A methodological approach to evaluate arsenic speciation and bioaccumulation in different plant species from two highly polluted mining areas. Sci Total Environ 414:600–607PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Cheng Z, Buckley BM, Katz B, Wright W, Bailey R, Smith KT et al (2007) Arsenic uptake by trees at highly contaminated site. Sci Total Environ 376:324–334PubMedCrossRefGoogle Scholar
  114. 114.
    Madejón P, Lepp NW (2007) Arsenic in oils and plants of woodland regenerated on an arsenic-contaminated substrate: a sustainable natural remediation? Sci Total Environ 379:256–262PubMedCrossRefGoogle Scholar
  115. 115.
    Shin MN, Shim J, You Y, Myung H, Bang KS, Cho M et al (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 199-200:314–320PubMedCrossRefGoogle Scholar
  116. 116.
    Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack FMG, Lust N (2003) Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ Pollut 126:257–282CrossRefGoogle Scholar
  117. 117.
    Goliński P, Mleczek M, Magdziak Z, Gąsecka M, Borowiak K, Dąbrowski J et al (2015) Efficiency of Zn phytoextraction, biomass yield and formation of low-molecular-weight organic acids in S × rubens – a hydroponic experiment. Chem Ecol 31:345–364CrossRefGoogle Scholar
  118. 118.
    Zhao X, Liu J, Xia X, Chu J, Wei Y, Shi S et al (2014) The evaluation of heavy metal accumulation and application of a comprehensive bio-concentration index for woody species on contaminated sites in Hunan, China. Environ Sci Pollut Res 21:5076–5085CrossRefGoogle Scholar
  119. 119.
    Delplanque M, Collet S, Del Gratta F, Schnuriger B, Gaucher R, Robinson B et al (2013) Combustion of Salix used for phytoextraction: the fate of metals and viability of the processes. Biomass Bioenergy 49:160–170CrossRefGoogle Scholar
  120. 120.
    Šyc M, Pohořelý M, Kameníková P, Habart J, Svoboda K, Punčochář M (2012) Willow trees from heavy metals phytoextraction as energy crops. Biomass Bioenergy 37:106–113CrossRefGoogle Scholar
  121. 121.
    Schoenmuth BW, Pestemer W (2004a) Dendroremediation of trinitrotoluene (TNT). Part 1: literature overview and research concept. Environ Sci Pollut Res 11:273–278CrossRefGoogle Scholar
  122. 122.
    Schoenmuth BW, Pestemer W (2004b) Dendroremediation of trinitrotoluene (TNT). Part 2: fate of radio-labelled TNT in trees. Environ Sci Pollut Res 11:331–339CrossRefGoogle Scholar
  123. 123.
    Ali B, Mwamba TM, Gill GRA, Yang C, Ali S et al (2014) Improvement of element uptake and antioxidative defense in Brassica napus under lead stress by application of hydrogen sulfide. Plant Growth Regul 74:261–273CrossRefGoogle Scholar
  124. 124.
    He J, Ma C, Hong YM, Kang LJ, Liu T, Polle A et al (2013) Cadmium tolerance in six poplar species. Environ Sci Pollut Res 20:10163–10174Google Scholar
  125. 125.
    Zafari S, Sharifi M, Chashmi NA, Mur LAJ (2016) Modulation of Pb-induced stress in Prosopis shoots through an interconnected network of signaling molecules, phenolic compounds and amino acids. Plant Physiol Biochem 99:11–20PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Diáz J, Bernal A, Pomar F, Merino F (2001) Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci 161:179–188CrossRefGoogle Scholar
  127. 127.
    Mittova V, Volokita M, Guy M, Tal M (2000) Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant 10:42–51CrossRefGoogle Scholar
  128. 128.
    Loponen J, Ossipov V, Lempa K, Haukioja E, Pihlaja K (1998) Concentrations and among-compound correlations of individual phenolics in white birch leaves under air pollution stress. Chemosphere 37:1445–1456CrossRefGoogle Scholar
  129. 129.
    Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL et al (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci 196:67–76PubMedCrossRefGoogle Scholar
  131. 131.
    Posmyk MM, Kontek K, Janas KM (2009) Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Safe 72:596–602CrossRefGoogle Scholar
  132. 132.
    Sakihama Y, Cohen MF, Grace SC, Yamasaki H (2002) Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177(1):67–80PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985CrossRefGoogle Scholar
  134. 134.
    Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Kováčik J, Klejdus B, Hedbavny J, Bačkora M (2010) Effect of copper and salicylic acid on phenolic metabolites and free amino acids in Scenedesmus quadricauda (Chlorophyceae). Plant Sci 178:307–311CrossRefGoogle Scholar
  136. 136.
    Poschenrieder C, Tolrà R, Barceló J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11:288–295PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Márquez-García B, Fernández MA, Córdoba F (2009) Phenolics composition in Erica sp. differentially exposed to metal pollution in the Iberian Southwestern Pyritic Belt. Bioresour Technol 100:446–451PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Pradas del Real AE, Silvan JM, del Pascual-Teresa S, Guerrero A, García-Gonzalo P, Lobo MC et al (2017) Role of the polycarboxylic compounds in the response of Silene vulgaris. Environ Sci Pollut Res 24:5746–5756CrossRefGoogle Scholar
  139. 139.
    Kasthuri J, Rajendiran N (2009) Functionalization of silver and gold nanoparticles using amino acid conjugated bile salts with tunable longitudinal plasmon resonance. Colloid Surface B 73:387–393CrossRefGoogle Scholar
  140. 140.
    Mikhaeil BR, Badria F, Maatooq G, Amer M (2004) Antioxidant and immunomodulatory constituents of henna leaves. Z Naturforsch C 59:468–476PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Drzewiecka K, Mleczek M, Gąsecka M, Magdziak Z, Budka A, Chadzinikolau T, Kaczmarek Z, Goliński P (2017) Copper and nickel co-treatment alters metal uptake and stress parameters of Salix purpurea×viminalis. Plant Physiol 216:125–134CrossRefGoogle Scholar
  142. 142.
    Gąsecka M, Mleczek M, Jutrzenka A, Goliński P, Stuper-Szablewska K (2017) Phenolic compounds in leaves of Salix species and hybrids growing under different soil conditions. Chem Ecol 33:196–212CrossRefGoogle Scholar
  143. 143.
    Drzewiecka K, Mleczek M, Gąsecka M, Magdziak Z, Goliński P (2012) Changes in Salix viminalis L. cv. ‘Cannabina’ morphology and physiology in response to nickel ions – hydroponic investigations. J Hazard Mater 217-218:429–438PubMedCrossRefGoogle Scholar
  144. 144.
    Pradas del Real AE, Pérez-Sanz A, Lobo MC, McNear DH Jr (2014) The chromium detoxification pathway in the multimetal accumulator Silene vulgaris. Environ Sci Technol 48:11479–11486PubMedCrossRefGoogle Scholar
  145. 145.
    Jiang S, Weng B, Liu T, Su Y, Liu J, Lu H et al (2017a) Response of phenolic metabolism to cadmium and phenanthrene and its influence on pollutant translocations in the mangrove plant Aegiceras corniculatum (L.) Blanco (Ac). Ecotoxicol Environ Safe 141:290–297CrossRefGoogle Scholar
  146. 146.
    Kováčik J, Klejdus B (2008) Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Rep 27:605–615PubMedCrossRefGoogle Scholar
  147. 147.
    Lavid N, Schwartz A, Yarden O, Tel-Or E (2001) The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212:323–331PubMedCrossRefGoogle Scholar
  148. 148.
    Wang J, Evangelou BP, Nielsen MT, Wagner GJ (1992) Computer, simulated evaluation of possible mechanisms for sequestering metal ion activity in plant vacuoles: II. Zinc. Plant Physiol 99:621–626PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Usha B, Venkataraman G, Parida A (2009) Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro. Mol Gen Genomics 281:99–108CrossRefGoogle Scholar
  150. 150.
    Drzewiecka K, Gąsecka M, Rutkowski P, Magdziak Z, Goliński P, Mleczek M (2018) Arsenic forms and their combinations induce differences in phenolic accumulation in Ulmus laevis Pall. J Plant Physiol 220:34–42PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Loponen J, Lempa K, Ossipov V, Kozlov MV, Girs A, Hangasma K et al (2001) Patterns in content of phenolic compounds in leaves of mountain birches along a strong pollution gradient. Chemosphere 45:291–301PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Borowiak K, Gąsecka M, Mleczek M, Dąbrowski J, Chadzinikolau T, Magdziak Z et al (2015) Photosynthetic activity in relation to chlorophylls, carbohydrates, phenolics and growth of a hybrid Salix purpurea × triandra × viminalis 2 at various Zn concentrations. Acta Physiol Plant 37:155CrossRefGoogle Scholar
  153. 153.
    Drzewiecka K, Mleczek M, Gąsecka M, Magdziak Z, Goliński P, Chadzinikolau T (2014) Copper phytoextraction with Salix purpurea × viminalis under various Ca/Mg ratios. Part 2. Effect on organic acid, phenolics and salicylic acid contents. Acta Physiol Plant 36:903–913CrossRefGoogle Scholar
  154. 154.
    Jia X, Zhao Y, Liu T, Huang S (2016) Elevated CO2 affects secondary metabolites in Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils. Chemosphere 160:199–207PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Zhao YH, Jia X, Wang WK, Liu T, Huang SP, Yang MY (2016) Growth under elevated air temperature alters secondary metabolites in Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils. Sci Total Environ 565:586–594PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Adeleke R, Nwangburuka C, Oboirien B (2017) Origins, roles and fate of organic acids in soils: a review. S Afr J Bot 108:393–406CrossRefGoogle Scholar
  157. 157.
    Jiang S, Xie F, Lu H, Liu J, Yan C (2017) Response of low-molecular-weight organic acids in mangrove root exudates to exposure of polycyclic aromatic hydrocarbons. Environ Sci Pollut Res 24:12484–12493CrossRefGoogle Scholar
  158. 158.
    Martin BC, George SJ, Price CA, Shahsavari E, Ball AS, Tibbett M et al (2016) Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms. Soil 2:487–498CrossRefGoogle Scholar
  159. 159.
    Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 41:653–658PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Xie X, Weiss DJ, Weng B, Liu J, Lu H, Yan C (2013) The short-term effect of cadmium on low molecular weight organic acid and amino acid exudation from mangrove (Kandelia obovata (S., L.) Yong) roots. Environ Sci Pollut Res 20:997–1008CrossRefGoogle Scholar
  161. 161.
    Xiao M, Wu F (2014) A review of environmental characteristics and effects of low-molecular weight organic acids in the surface ecosystem. J Environ Sci 26:935–954CrossRefGoogle Scholar
  162. 162.
    Magdziak Z, Mleczek M, Rutkowski P, Goliński P (2017) Diversity of low-molecular weight organic acids synthesized by Salix growing in soils characterized by different Cu, Pb and Zn concentrations. Acta Physiol Plant 39:137CrossRefGoogle Scholar
  163. 163.
    Wang Y, Fang L, Lin L, Luan T, Tam NFY (2014) Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons. Chemosphere 99:152–159PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Wang S, ChQ F, Wang P (2015) Determination of ultra-trace organic acids in Masson pine (Pinus massoniana L.) by accelerated solvent extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr B 981-982:1–8CrossRefGoogle Scholar
  165. 165.
    Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56CrossRefGoogle Scholar
  166. 166.
    Haoliang L, Chongling Y, Jingchun L (2007) Low-molecular-weight organic acids exuded by Mangrove (Kandelia candel (L.) Druce) roots and their effect on cadmium species change in the rhizosphere. Environ Exp Bot 61:159–166CrossRefGoogle Scholar
  167. 167.
    Kersten GJ (2015) Phytoremediation of metal contamination using Salix (willows) [dissertation]. University of DenverGoogle Scholar
  168. 168.
    Magdziak Z, Kozłowska M, Kaczmarek Z, Mleczek M, Chadzinikolau T, Golinski P, Drzewiecka K (2011) Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis. II. Secretion of low molecular weight organic acids to the rhizosphere. Ecotoxicol Environ Safe 74:33–40CrossRefGoogle Scholar
  169. 169.
    Gąsecka M, Mleczek M, Drzewiecka K, Magdziak Z, Rissmann I, Chadzinikolau T et al (2012) Physiological and morphological changes in Salix viminalis L. as a result of plant exposure to copper. J Environ Sci Health A 74:33–40Google Scholar
  170. 170.
    Magdziak Z, Mleczek M, Kaczmarek Z, Golinski P (2013) Influence of Ca/Mg ratio and Cd2+ and Pb2+ elements on low molecular weight organic acid secretion by Salix viminalis L. roots into the rhizosphere. Trees 27:663–673CrossRefGoogle Scholar
  171. 171.
    Nigam R, Srivastava S, Prakash S, Srivastava M (2001) Cadmium mobilization and plant availability-the impact of organic acids commonly exuded from roots. Plant Soil 230:107–113CrossRefGoogle Scholar
  172. 172.
    Dresler S, Hanaka A, Bednarek W, Maksymiec W (2014) Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiol Plant 36:1565–1575CrossRefGoogle Scholar
  173. 173.
    Adeniji BA, Budimir-Hussey MT, Macfie SM (2010) Production of organic acids and adsorption of Cd on roots of durum wheat (Triticum turgidum L. var. Durum). Acta Physiol Plant 32:1063–1072CrossRefGoogle Scholar
  174. 174.
    Duarte B, Delgado M, Caçador I (2007) The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere 69:836–840PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Liao YC, Chang Chien S, Wang M, Shen Y, Seshaiah K (2007) Relationship between lead uptake by lettuce and water-soluble low-molecular-weight organic acids in rhizosphere as influenced by transpiration. J Agric Food Chem 55:8640–8649PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Meier S, Alvear M, Borie F, Aguilera P, Ginocchio R, Cornejo P (2012) Influence of copper on root exudate patterns in some metallophytes and agricultural plants. Ecotoxicol Environ Safe 75:8–15CrossRefGoogle Scholar
  177. 177.
    Muhammad D, Chen F, Zhao J, Zhang G, Wu F (2009) Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Int J Phytoremediation 11:558–574PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Parisová M, Navrátil T, Šestáková I, Dytrtová JJ, Mareček V (2013) Influence of low molecular weight organic acids on transport of cadmium and copper ions across model phospholipid membranes. Int J Electrochem Sci 8:27–44Google Scholar
  179. 179.
    Ueno D, Ma JF, Iwashita T, Zhao FJ, McGrath SP (2005) Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113Cd-NMR. Planta 221:928–936PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mirosław Mleczek
    • 1
    Email author
  • Monika Gąsecka
    • 1
  • Janina Kaniuczak
    • 2
  • Piotr Goliński
    • 1
  • Małgorzata Szostek
    • 2
  • Zuzanna Magdziak
    • 1
  • Paweł Rutkowski
    • 3
  • Sylwia Budzyńska
    • 1
  1. 1.Department of ChemistryPoznań University of Life SciencesPoznańPoland
  2. 2.Department of Soil Science, Environmental Chemistry and HydrologyUniversity of RzeszówRzeszówPoland
  3. 3.Department of Forest Sites and EcologyPoznań University of Life SciencesPoznańPoland

Personalised recommendations