Phytoremediation of Chromium-Polluted Soil Using Plants in Conjunction with Microbes

  • Ayesha Siddiqa
  • Muhammad Faisal


Chromium is a heavy metal that is found naturally in land and water bodies in small quantities, maybe due to the corrosion of rocks and weathering. However it is also an essential compound for humans in minute quantities. So Cr has gained biological and environmental prominence in past decades as its high deposition in Earth’s crust has become a potential threat to the environment and all life forms. Cr exists in many oxidation states and their concentration varies in a particular environment. However, its toxic form is Cr VI that is soluble in water and permeable through biological membranes, and its deposition in the body may lead to serious neurological and physiological damage to the human body and may cause carcinomas. From past decades the researchers are using hyperaccumulator plants to remediate the Cr-polluted environment. The phytoremediation depends upon the Cr species, type of soil, type of plant, and physicochemical properties of soil. Although there is a space for more research, phytoremediation is a hope to clean our environment biologically.


Chromium Hyperaccumulators Genotoxicity Phytochelatins Ascorbate peroxidase Antioxidants 


  1. 1.
    Gill RA, Ali B, Cui P, Shen E, Farooq MA, Islam F, Ali S, Mao B, Zhou W (2016) Comparative transcriptome profiling of two Brassica napus cultivars under chromium toxicity and its alleviation by reduced glutathione. BMC Genomics 17:885PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Buters J, Biedermann T (2017) Chromium(VI) contact dermatitis: getting closer to understanding the underlying mechanisms of toxicity and sensitization! J Investig Dermatol 137(2):274–277PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Pirsaheb M, Hossini H, Jabari Y, Sharafi K, Mohamadi S (2016) Evaluation of heavy metals (chromium, nickel and lead) in topsoil of the residential and industrial area of Kermanshah, Iran. IIOAB J 7(2):410–415Google Scholar
  4. 4.
    Lukina AO, Boutin C, Rowland O, Carpenter DJ (2016) Evaluating trivalent chromium toxicity on wild terrestrial and wetland plants. Chemosphere 162:355–364PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ding H, Wang G, Lou L, Lv J (2016) Physiological responses and tolerance of Hibiscus cannabinus L. exposed to chromium. Ecotoxicol Environ Saf 133:509–518PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Verger L, Dargaud O, Chassé M, Trcera N, Rousse G, Cormier L (2017) Synthesis, properties and uses of chromium-based pigments from the Manufacture de Sèvres. J Cult Herit. Scholar
  7. 7.
    Mahmoud AM, AbdEl-Twab SM (2017) Caffeic acid phenethyl ester protects the brain against hexavalent chromium toxicity by enhancing endogenous antioxidants and modulating the JAK/STAT signaling pathway. Biomed Pharmacother 91:303–311PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Anjum SA, Ashraf U, Khan I, Tanveer M, Shahid M, Shakoor A, Wang LC (2017) Phyto-toxicity of chromium in maize: oxidative damage, osmolyte accumulation. Pedosphere, anti-oxidative defense and chromium uptake 27(2):262–273Google Scholar
  9. 9.
    Islam F, Yasmeen T, Arif MS, Riaz M, Shahzad SM, Imran Q, Ali I (2016) Combined ability of chromium (Cr) tolerant plant growth-promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol Biochem 108:456–467PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ahemad M (2015) Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Genet Eng Biotechnol 13:51–58CrossRefGoogle Scholar
  11. 11.
    Ahemad M (2014) Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab J Chem.
  12. 12.
    Gomes MA, Hauser-Davis RA, Suzuki MS, Vitória AP (2017) Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. Ecotoxicol Environ Saf 140:55–64PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Khan N, Dumat C, Rashid MI (2017) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Qambrani NA, Hwang JH, EunOh S (2016) Comparison of chromium III and VI toxicities in water using sulfur-oxidizing bacterial bioassays. Chemosphere 160:342–348PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Pradhan D, BehariSukla L, Sawyer M, Rahman P (2017) Recent bioreduction of hexavalent chromium in wastewater treatment: a review. J Ind Eng Chem 55:1–20CrossRefGoogle Scholar
  16. 16.
    Pandey S, Singh NK, Bansal AK, Arutchelvan V, Sarkar S (2015) Alleviation of toxic hexavalent chromium using indigenous aerobic bacteria isolated from contaminated tannery industry sites. Prep Biochem Biotechnol 46:517–523CrossRefGoogle Scholar
  17. 17.
    Prasad R, Kumar M, Trivedi SP (2017) Antigenotoxic effect of turmeric powder extract curcumin against chromium trioxide induced genotoxicity in fish Channa punctatus. J Entomol Zool Stud 5(1):89–94Google Scholar
  18. 18.
    Bondy SC (2016) Inflammation, aging, and oxidative stress. In: Bondy SC, Cambell A (eds) Metal toxicity, inflammation and oxidative stress, 1st edn. Springer, ChamCrossRefGoogle Scholar
  19. 19.
    Suh M, Thompson CM, Kirman CR, Carakostas MC, Haws LC, Harris MA, Proctor DM (2014) High concentrations of hexavalent chromium in drinking water alter iron homeostasis in F344 rats and B6C3F1 mice. Food Chem Toxicol 65:381–388PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Kart A, Koc E, Dalginli KY et al (2016) The therapeutic role of glutathione in oxidative stress and oxidative DNA damage caused by hexavalent chromium. Biol Trace Elem Res 174:387. Scholar
  21. 21.
    Tian X, Patel K, Ridpath JR, Chen Y, Zhou Y-H, Neo D et al (2016) Homologous recombination and translesion DNA synthesis play critical roles on tolerating DNA damage caused by trace levels of hexavalent chromium. PLoS One 11(12):e0167503. Scholar
  22. 22.
    Wakeman TP, Aimin Yang A, Dalal NS, Boohaker RJ, Zeng Q, Ding Q, Xu B (2017) DNA mismatch repair protein Mlh1 is required for tetravalent chromium intermediate-induced DNA damage. Oncotarget 8(48):83975–83985PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hartikainen ES, Hatakka A, Kahkonen MA (2013) Impact of cadmium, chromium, cobalt, lithium and manganese to the growth of fungi and production of enzymes. Expert Opin Environ Biol 2(3).
  24. 24.
    Rafi S, Shoaib A, Awan ZA, Rizvi NB, Nafisa, Shafiq M (2017) Chromium tolerance, oxidative stress response, morphological characteristics, and FTIR studies of phytopathogenic fungus Sclerotium rolfsii. Folia Microbiol 62(3):207–219CrossRefGoogle Scholar
  25. 25.
    Luczak MW, Green SE, Zhitkovich A (2016) Different ATM signaling in response to chromium(VI) metabolism via ascorbate and nonascorbate reduction: implications for in vitro models and toxicogenomics. Environ Health Perspect 124(1):61–66. Scholar
  26. 26.
    Park S, Li C, Zhao H, Darzynkiewicz Z, Xu D (2016) Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells. Oncotarget 7(8):8916–8930. Scholar
  27. 27.
    Cervantes C, Campos-Garc J, Devars S, Corona FG, Tavera HL, Torres-Guzma JC, Moreno-Sänchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Rao MY, Narechania MB (2016) The genotoxic effects of anti-cancer drug gossypol on human lymphocytes and its mitigation by melatonin. Drug Chem Toxicol 39(4). Scholar
  29. 29.
    Wise JP, Wise SS, Little JE (2002) The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in human lung cells. Mutat Res 517:221–229PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Wise SS, Holmes AL, Liou L, Adam RM, Wise JP (2016) Hexavalent chromium induces chromosome instability in human urothelial cells. Toxicol Appl Pharmacol 296:54–60PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Patierno SR, Banh D, Landolph JR (1988) Transformation of C3H/10T1/2 mouse embryo cells by insoluble lead chromate but not soluble calcium chromate: relationship to mutagenesis and internalization of lead chromate particles. Cancer Res 47:3815–3823Google Scholar
  32. 32.
    Ishikawa Y, Nakagawa K, Satoh Y, Kitagawa T, Sugano H, Hirano T, Tsuchiya E (1994) Characteristics of chromate workers’ cancers, chromium lung deposition and pre-cancerous bronchial lesions: an autopsy study. Br J Cancer 70:160–166PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Browning CL, Speer RM, Wise JP (2017) Molecular mechanisms of chromium-induced carcinogenesis. In: Mudipalli A, Zelikoff J (eds) Essential and non-essential metals. Humana, ChamGoogle Scholar
  34. 34.
    Wise SS, Wise C, Xie H, Guillette LJ, Zhu C, Wise JP Jr, Wise JP Sr (2016) Hexavalent chromium is cytotoxic and genotoxic to American alligator cells. Aquat Toxicol 171:30–36PubMedCrossRefGoogle Scholar
  35. 35.
    Kamran M, Eqani S, Katsoyiannis A, Xu R, Bibi S, Benizri E, Chaudhary H (2017) Phytoextraction of chromium (Cr) and influence of Pseudomonas putida on Eruca sativa growth. J Geochem Explor 182:269–274CrossRefGoogle Scholar
  36. 36.
    López-Luna J, Silva-Silva M, Martinez-Vargas S, Mijangos-Ricardez O, González-Chávez M, Solís-Domínguez F, Cuevas-Díaz M (2016) Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior. Sci Total Environ 565:941–950PubMedCrossRefGoogle Scholar
  37. 37.
    Sharma P, Kumar A, Bhardwaj R (2016) Plant steroidal hormone epibrassinolide regulate—heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 122:1–9CrossRefGoogle Scholar
  38. 38.
    Farid M, Ali S, Akram NA, Rizwan M, Abbas F, Bukhari S, Saeed R (2017) Phyto-management of Cr-contaminated soils by sunflower hybrids: physiological and biochemical response and metal extractability under Cr stress. Environ Sci Pollut Res 24(20):16845CrossRefGoogle Scholar
  39. 39.
    Gu CS, Liu LQ, Deng YM, Zhang YX, Wang ZQ, Yuan HY, Huang SZ (2017) De novo characterization of the Iris lactea var. chinensis transcriptome and an analysis of genes under cadmium or lead exposure. Ecotoxicol Environ Saf 144:507–513PubMedCrossRefGoogle Scholar
  40. 40.
    Wani RA, Ganai BA, Shah MA, Uqab B (2017) Heavy metal uptake potential of aquatic plants through phytoremediation technique – a review. J Bioremed Biodegr 8:4. Scholar
  41. 41.
    Souza FB, Lima Brandao H, Hackbarth FV, AAU S, Boaventura RA, SMGU S, Vilar VJ (2016) Marine macro-alga Sargassum cymosum as electron donor for hexavalent chromium reduction to trivalent state in aqueous solutions. Chem Eng J 283:903–910CrossRefGoogle Scholar
  42. 42.
    Oliveira LM, Gress J, De J, Rathinasabapathi B, Marchi G, Chen Y, Ma LQ (2016) Sulfate and chromate increased each other’s uptake and translocation in As-hyperaccumulator Pteris vittata. Chemosphere 147:36–43PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Oliveira LM, Ma LQ, Santos JA, Guilherme LR, Lessl JT (2014) Effects of arsenate, chromate, and sulfate on arsenic and chromium uptake and translocation by arsenic hyperaccumulator Pteris vittata L. Environ Pollut 184:187–192PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ma Q, Cao X, Ma J, Tan X, Xie Y, Xiao H, Wu L (2017) Hexavalent chromium stress enhances the uptake of nitrate but reduces the uptake of ammonium and glycine in pak choi (Brassica chinensis L.). Ecotoxicol Environ Safe 139:384–393CrossRefGoogle Scholar
  45. 45.
    Sobariu DL, Fertu DIT, Diaconu M, Pavel LV, Hlihor RM, Drăgoi EN, Curteanu S, Lenz M, Corvini PFX, Gavrilescu M (2017) Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnol 39:125–134CrossRefGoogle Scholar
  46. 46.
    Tiwari KK, Dwivedi S, Singh N, Rai U, Tripathi R (2009) Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients. J Environ Biol 30(3):389–394PubMedPubMedCentralGoogle Scholar
  47. 47.
    Liu J, Duan CQ, Zhang X, Zhu Y, Hu C (2009) Subcellular distribution of chromium in accumulating plant Leersia hexandra Swartz. Plant Soil 322:187–195CrossRefGoogle Scholar
  48. 48.
    Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M (2017) Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. Ecotoxicol Environ Saf 144:216–226PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Dalyan E, Yüzbaşıoğlu E, Keskin BC, Yıldızhan Y, Memon A, Ünal M, Yüksel B (2017) The identification of genes associated with Pb and Cd response mechanism in Brassica juncea L. by using Arabidopsis expression array. Environ Exp Bot 139:105–115CrossRefGoogle Scholar
  50. 50.
    Tang CF, Song JF, Hu X, Hu X, Zhao Y, Li B, Ou D, Peng L (2017) Exogenous spermidine enhanced Pb tolerance in Salix matsudana by promoting Pb accumulation in roots and spermidine, nitric oxide, and antioxidant system levels in leaves. Ecol Eng 107:41–48CrossRefGoogle Scholar
  51. 51.
    Xiao KQ, Li LG, Ma LP, Zhang SY, Bao P, Zhang T, Zhu YG (2016) Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents. Environ Pollut 211:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Nakashita AM (2016) Combinatorial use of sulfur-responsive regions of sulfate transporters provides a highly sensitive plant-based system for detecting selenate and chromate in the environment. Soil Sci Plant Nutr 62(4):386–391CrossRefGoogle Scholar
  53. 53.
    Murphy T, Kirkham C, Johnson A, Brauer A, Koszelak-Rosenblum M, Malkowski M (2016) Sulfate-binding protein, CysP, is a candidate vaccine antigen of Moraxella catarrhalis. Vaccine 34:3855–3861PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Huda AKM, Haque MA, Zaman R, Swaraz AM, Kabir AH (2017) Silicon ameliorates chromium toxicity through phytochelatin-mediated vacuolar sequestration in the roots of Oryza sativa (L). Int J Phytoremediation 19(3):246–253PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Diwan H, Khan I, Ahmad A, Iqbal M (2010) Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regul 61:97–107CrossRefGoogle Scholar
  56. 56.
    Kumari S, Varma A, Tuteja N, Choudhary DK (2016) Bacterial ACC-deaminase: an eco-friendly strategy to cope abiotic stresses for sustainable agriculture. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, SingaporeGoogle Scholar
  57. 57.
    Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25CrossRefGoogle Scholar
  58. 58.
    Islam MK, Khanam S, Lee SY, Alam I, Huhl MR (2014) The interaction of arsenic (As) and chromium (Cr) influences growth and antioxidant status in tossa jute (‘Corchorus olitorius’). Plant Omics 7:499Google Scholar
  59. 59.
    Kovacik J, Babula P, Hedbavny J, Klejdus B (2014) Hexavalent chromium damages chamomile plants by alteration of antioxidants and its uptake is prevented by calcium. J Hazard Mater 273:110–117PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SA, Saeed R, Wu L (2017) Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol Environ Saf 145:90. Scholar
  61. 61.
    Ganesh KS, Baskaran L, Rajasekaran S, Sumathi K, Chidambaram A, Sundaramoorthy P (2008) Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants. Colloids Surf B Biointerfaces 63(2):159–163PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Hua ZJ, Keli Y, ZhongGui Z, WuSheng J, DongHua L (2009) Antioxidant response system and chlorophyll fluorescence in chromium (VI)-treated Zea mays L. seedlings. Acta Biol Cracov Ser Bot 51:23–33Google Scholar
  63. 63.
    Adrees M, Ali S, Iqbal M, Bharwana SA, Siddiqi Z, Farid M, Ali Q, Saeed R, Rizwan M (2015) Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media. Ecotoxicol Environ Saf 122:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PMC (2017) Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Rev Environ Contam Toxicol 241:73–137PubMedPubMedCentralGoogle Scholar
  65. 65.
    Wu Z, McGrouther K, Chen D, Wu W, Wang H (2013) Subcellular distribution of metals within Brassica chinensis L. in response to elevated lead and chromium stress. J Agric Food Chem 61:4715–4722PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Khasheii B, Anvari S, Jamalli A (2016) Frequency evaluation of genes encoding siderophores and the effects of different concentrations of Fe ions on growth rate of uropathogenic Escherichia coli. Iran J Microbiol 8(6):359–365PubMedPubMedCentralGoogle Scholar
  67. 67.
    Kong Z, Glick BR (2017) The role of plant growth-promoting bacteria in metal phytoremediation. Adv Microbl Physiol 71:97–132CrossRefGoogle Scholar
  68. 68.
    Chen Y, Yang W, Chao Y, Wang S, Tang YT, Qiu RL (2017) Metal-tolerant Enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination. Plant Soil 413:203–216CrossRefGoogle Scholar
  69. 69.
    Chen X, Liu X, Zhang X, Cao L, Hu XX (2017) Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. J Hazard Mater 325:319–326PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Liu X, Fu JW, Silva ED, Shi XX, Cao Y, Bapathi BR, Chen Y, Ma LQ (2017) Microbial siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by As-hyperaccumulator Pteris vittata. Environ Pollut 223:230–237PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazard Mater 320:36–44PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Wang B, Wang Q, Liu W, Liu X, Hou J, Teng Y, Luo Y, Christie P (2017) Biosurfactant-producing microorganism Pseudomonas sp. SB assists the phytoremediation of DDT-contaminated soil by two grass species. Chemosphere 182:137–142PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Huang G, Guo G, Yao S, Zhang N, Hu H (2016) Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) under Cu stress. Int J Phytoremediation 18(1):33–40PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Soni SK, Singh R, Singh M, Awasthi A, Wasnik K, Kalra A (2014) Pretreatment of Cr(VI)-amended soil with chromate-reducing rhizobacteria decreases plant toxicity and increases the yield of Pisum sativum. Environ Contam Toxicol 66:616–627CrossRefGoogle Scholar
  75. 75.
    Trivedi P, Pandey A, Sa T (2007) Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MtCC 7905. Basic Microbiol 47:513–517CrossRefGoogle Scholar
  76. 76.
    Soni SK, Singh R, Awasthi A, Kalra A (2014) A Cr(VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea mays in Cr(VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi. Int Environ Sci Pollut Res Int 21(3):1971–1979PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Rosariastuti R, Prijambada ID, Ngadiman N, Prawidyarini GS, Putri AR (2013) Isolation and identification of plant growth promoting and chromium uptake enhancing bacteria from soil contaminated by leather tanning industrial waste. J Basic Appl Sci 9:243–251Google Scholar
  78. 78.
    Faisal M (2013) Inoculation of plant growth promoting bacteria Ochrobactrum intermedium, Brevibacterium sp. and Bacillus cereus induce plant growth parameters. J Appl Biotechnol 1:45–53CrossRefGoogle Scholar
  79. 79.
    Faisal M, Hasnain S (2006) Plant growth promotion by Brevibacterium under chromium stress. Res J Bot 1(1):24–29CrossRefGoogle Scholar
  80. 80.
    Faisal M, Hasnain S (2006) Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata. Lett Appl Microbiol 43:461–466PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Faisal M, Hasnain S (2005) Bacterial Cr(VI) reduction concurrently improves sunflower (Helianthus annuus L.) growth. Biotechnol Lett 27(13):943–947PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 10:1829–1836CrossRefGoogle Scholar
  85. 85.
    Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286PubMedCrossRefGoogle Scholar
  86. 86.
    Wales DS, Sagar BF (1990) Recovery of metal ions by microfungal filters. J Chem Technol Biotechnol 49:345–355PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250CrossRefGoogle Scholar
  88. 88.
    Pillichshammer M, Pumpel T, Poder R, Eller K, Klima J, Schinner F (1995) Biosorption of chromium to fungi. Biometals 8:117–121CrossRefGoogle Scholar
  89. 89.
    Asheh S, Duvnjak Z (1995) Adsorption of copper and chromium by Aspergillus carbonarius. Biotechnol Prog 11:638–642CrossRefGoogle Scholar
  90. 90.
    Rapoport AI, Muter OA (1995) Biosorption of hexavalent chromium by yeast. Process Biochem 30:145–149CrossRefGoogle Scholar
  91. 91.
    Loubna E, Hafidi M, Silvestre J, Kallerhoff J, Merlina G, Pinelli E (2015) Efficiency of co-composting process to remove genotoxicity from sewage sludge contaminated with hexavalent chromium. Ecol Eng 82:355–360CrossRefGoogle Scholar
  92. 92.
    Gómez SR, Naranjoa EM, Buenoa IV, Feldmanb SR (2011) Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis. J Hazard Mater 185(2–3):862–869Google Scholar
  93. 93.
    Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz CE, Vernon-Carte EJ (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101(15):5862–5867PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Ghafoori M, Majid N, Islam M, Luhat S (2011) Bioaccumulation of heavy metals by Dyera costulata cultivated in sewage sludge contaminated soil. Afr J Biotechnology 10(52):10674–10682CrossRefGoogle Scholar
  95. 95.
    Mellem JJ (2009) Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. J Environ Sci Health A Tox Hazard Subst Environ Eng 44(6):568–575CrossRefGoogle Scholar
  96. 96.
    Gardea-Torresdeyab JL, Peralta-Videaa JR, Montesb M, Rosaa G, Corral-Diaz B (2004) Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresour Technol 92(3):229–235PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Daud M K, Mei L, Azizullah A, Dawood M, Ali I, Mahmood Q, Ullah W (2016) Leaf-based physiological, metabolic, and ultrastructural changes in cultivated cotton cultivars under cadmium stress mediated by glutathione. Environ Sci Pollut Res 23(15):15551–15564PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Jie Liu J, Duan C, Zhang X, Zhu Y, LuX (2011) Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. J Hazard Mater 188(1–3):85–91PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Sampanpanish P, Pongsapich W, Khaodhiar S, Khan E (2006) Chromium Removal from Soil by Phytoremediation with Weed Plant Species in Thailand. Water Air Soil Pollut 6(1-2):191–206CrossRefGoogle Scholar
  100. 100.
    Khan N, Mishra A, Chauhan PS, Sharma YK, Nautiyal CS (2012) Paenibacillus lentimorbus enhances growth of chickpea (Cicer arietinum L.) in chromium-amended soil. Antonie van Leeuwenhoek 101(2):453–459PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Sabir M, Waraich EA, Hakeem KR, Ozturk M, Ahmed HR, Shahid M (2015) Phytoremediation: Mechanism and adaptation. In: Khalid RH, Sabir M, Ozturk M, Murmet M (eds) Soil remediation and plants. Elsevier Academic Press, pp 85–105Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ayesha Siddiqa
    • 1
  • Muhammad Faisal
    • 1
  1. 1.Department of Microbiology and Molecular GeneticsUniversity of the PunjabLahorePakistan

Personalised recommendations