Advertisement

Sparse Polynomial Arithmetic with the BPAS Library

  • Mohammadali Asadi
  • Alexander Brandt
  • Robert H. C. Moir
  • Marc Moreno Maza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11077)

Abstract

We discuss algorithms for pseudo-division and division with remainder of multivariate polynomials with sparse representation. This work is motivated by the computations of normal forms and pseudo-remainders with respect to regular chains. We report on the implementation of those algorithms with the BPAS library.

Notes

Acknowledgments

The authors would like to thank IBM Canada Ltd (CAS project 880) and NSERC of Canada (CRD grant CRDPJ500717-16).

References

  1. 1.
    Arnold, A., Roche, D.S.: Output-sensitive algorithms for sumset and sparse polynomial multiplication. In: Proceedings of ISSAC 2015, pp. 29–36 (2015). http://doi.acm.org/10.1145/2755996.2756653
  2. 2.
    Bronstein, M., Moreno Maza, M., Watt, S.: Generic programming techniques in ALDOR. In: Proceedings of AWFS 2007, pp. 72–77 (2007)Google Scholar
  3. 3.
    Chen, C., Covanov, S., Mansouri, F., Maza, M.M., Xie, N., Xie, Y.: Parallel integer polynomial multiplication. CoRR abs/1612.05778 (2016). http://arxiv.org/abs/1612.05778
  4. 4.
    Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012).  https://doi.org/10.1016/j.jsc.2011.12.023MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gastineau, M., Laskar, J.: Highly scalable multiplication for distributed sparse multivariate polynomials on many-core systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 100–115. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-02297-0_8CrossRefGoogle Scholar
  6. 6.
    Gastineau, M., Laskar, J.: Parallel sparse multivariate polynomial division. In: Proceedings of PASCO 2015, pp. 25–33 (2015). http://doi.acm.org/10.1145/2790282.2790285
  7. 7.
    Granlund, T., et al.: GNU MP 6.0 Multiple Precision Arithmetic Library. Samurai Media Limited (2015)Google Scholar
  8. 8.
    Hall Jr., A.D.: The ALTRAN system for rational function manipulation-a survey. In: Proceedings of the Second ACM Symposium on Symbolic and Algebraic Manipulation, pp. 153–157. ACM (1971)Google Scholar
  9. 9.
    Hart, W., Johansson, F., Pancratz, S.: FLINT: Fast Library for Number Theory, v. 2.4.3. http://flintlib.org
  10. 10.
    van der Hoeven, J., Lecerf, G.: On the bit-complexity of sparse polynomial and series multiplication. J. Symb. Comput. 50, 227–254 (2013).  https://doi.org/10.1016/j.jsc.2012.06.004MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Johnson, S.C.: Sparse polynomial arithmetic. ACM SIGSAM Bull. 8(3), 63–71 (1974)CrossRefGoogle Scholar
  12. 12.
    Leiserson, C.E.: Cilk. In: Padua, D. (ed.) Encyclopedia of Parallel Computing, pp. 273–288. Springer, Boston (2011).  https://doi.org/10.1007/978-0-387-09766-4_289CrossRefGoogle Scholar
  13. 13.
    Lemaire, F., Maza, M.M., Xie, Y.: The regularchains library in MAPLE. ACM SIGSAM Bull. 39(3), 96–97 (2005).  https://doi.org/10.1145/1113439.1113456CrossRefzbMATHGoogle Scholar
  14. 14.
    Li, X., Maza, M.M., Schost, É.: Fast arithmetic for triangular sets: from theory to practice. J. Symb. Comput. 44(7), 891–907 (2009).  https://doi.org/10.1016/j.jsc.2008.04.019MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Monagan, M.B., Pearce, R.: Parallel sparse polynomial multiplication using heaps. In: ISSAC, pp. 263–270 (2009)Google Scholar
  16. 16.
    Monagan, M., Pearce, R.: Polynomial division using dynamic arrays, heaps, and packed exponent vectors. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 295–315. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75187-8_23CrossRefGoogle Scholar
  17. 17.
    Monagan, M., Pearce, R.: Parallel sparse polynomial division using heaps. In: Proceedings of PASCO 2010, pp. 105–111. ACM (2010)Google Scholar
  18. 18.
    Monagan, M., Pearce, R.: The design of Maple’s sum-of-products and POLY data structures for representing mathematical objects. ACM Commun. Comput. Algebra 48(3/4), 166–186 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Monagan, M.B., Pearce, R.: Sparse polynomial division using a heap. J. Symb. Comput. 46(7), 807–822 (2011).  https://doi.org/10.1016/j.jsc.2010.08.014MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Moreno Maza, M., Xie, Y.: Balanced dense polynomial multiplication on multi-cores. Int. J. Found. Comput. Sci. 22(5), 1035–1055 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Shoup, V., et al.: NTL: A library for doing number theory. www.shoup.net/ntl/

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mohammadali Asadi
    • 1
  • Alexander Brandt
    • 1
  • Robert H. C. Moir
    • 1
  • Marc Moreno Maza
    • 1
  1. 1.Department of Computer ScienceThe University of Western OntarioLondonCanada

Personalised recommendations