Advertisement

Multi-objective Metaheuristics for a Flexible Ligand-Macromolecule Docking Problem in Computational Biology

  • Esteban López Camacho
  • María Jesús García-Godoy
  • Javier Del Ser
  • Antonio J. Nebro
  • José F. Aldana-Montes
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 798)

Abstract

The problem of molecular docking focuses on minimizing the binding energy of a complex composed by a ligand and a receptor. In this paper, we propose a new approach based on the joint optimization of three conflicting objectives: \(E_{inter}\) that relates to the ligand-receptor affinity, the \(E_{intra}\) characterizing the ligand deformity and the RMSD score (Root Mean Square Deviation), which measures the difference of atomic distances between the co-crystallized ligand and the computed ligand. In order to deal with this multi-objective problem, three different metaheuristic solvers (SMPSO, MOEA/D and MPSO/D) are used to evolve a numerical representation of the ligand’s conformation. An experimental benchmark is designed to shed light on the comparative performance of these multi-objective heuristics, comprising a set of HIV-proteases/inhibitors complexes where flexibility was applied. The obtained results are promising, and pave the way towards embracing the proposed algorithms for practical multi-criteria in the docking problem.

Keywords

Molecular docking Multi-objective optimization Flexibility modeling SMPSO MOEA/D MPSO/D 

Notes

Acknowledgments

This work has been partially supported by the proyect grants TIN2014-58304 y TIN2017-86049-R (Ministerio de Economía, Industria y Competividad) and P12-TIC-1519 (Plan Andaluz de Investigación, Desarrollo e Innovación). Javier Del Ser would also like to thank the Basque Government for its support through the EMAITEK Funding Program.

References

  1. 1.
    Boisson, J.C., Jourdan, L., Talbi, E.G., Horvath, D.: Parallel multi-objective algorithms for the molecular docking problem. In: 2008 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 187–194 (2008).  https://doi.org/10.1109/CIBCB.2008.4675777
  2. 2.
    Boxin, G., Changsheng, Z., Jiaxu, N.: Edga: a population evolution direction-guided genetic algorithm for proteinligand docking. J. Comput. Chem. 23(7), 585–596 (2016).  https://doi.org/10.1089/cmb.2015.0190CrossRefGoogle Scholar
  3. 3.
    Dai, C., Wang, Y., Ye, M.: A new multi-objective particle swarm optimization algorithm based on decomposition. Inf. Sci. 325(C), 541–557 (2015).  https://doi.org/10.1016/j.ins.2015.07.018CrossRefGoogle Scholar
  4. 4.
    Garca-Nieto, J., Lpez-Camacho, E., Garca-Godoy, M.J., Nebro, A.J., Aldana-Montes, J.F.: Multi-objective ligand-protein docking with particle swarm optimizers. Swarm Evol. Comput. (2018).  https://doi.org/10.1016/j.swevo.2018.05.007
  5. 5.
    García-Godoy, M.J., López-Camacho, E., García Nieto, J., Nebro, A.J., Aldana-Montes, J.F.: Solving molecular docking problems with multi-objective metaheuristics. Molecules 20(6), 10,154–10,183 (2015)CrossRefGoogle Scholar
  6. 6.
    Janson, S., Merkle, D., Middendorf, M.: Molecular docking with multi-objective particle swarm optimization. Appl. Soft Comput. 8(1), 666–675 (2008).  https://doi.org/10.1016/j.asoc.2007.05.005CrossRefGoogle Scholar
  7. 7.
    Leonhart, P.F., Spieler, E., Ligabue-Braun, R., Dorn, M.: A biased random key genetic algorithm for the protein-ligand docking problem. Soft Comput. (2018).  https://doi.org/10.1007/s00500-018-3065-5
  8. 8.
    López-Camacho, E., García Godoy, M.J., Nebro, A.J., Aldana-Montes, J.F.: JMETALCPP: optimizing molecular docking problems with a C++ metaheuristic framework. Bioinformatics 30(3), 437–438 (2014)CrossRefGoogle Scholar
  9. 9.
    López-Camacho, E., García Godoy, M.J., García-Nieto, J., Nebro, A.J., Aldana-Montes, J.F.: Solving molecular flexible docking problems with metaheuristics: a comparative study. Appl. Soft Comput. 28, 379–393 (2015).  https://doi.org/10.1016/j.asoc.2014.10.049CrossRefGoogle Scholar
  10. 10.
    López-Camacho, E., García-Godoy, M.J., García-Nieto, J., Nebro, A.J., Aldana-Montes, J.F.: A New Multi-objective Approach for Molecular Docking Based on RMSD and Binding Energy, pp. 65–77. Springer International Publishing, Cham (2016)Google Scholar
  11. 11.
    Meng, X.Y., Zhang, H.X., Mezei, M., Cui, M.: Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 7(2), 146–157 (2011)CrossRefGoogle Scholar
  12. 12.
    Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009)CrossRefGoogle Scholar
  13. 13.
    Nebro, A.J., Durillo, J.J., Garcia-Nieto, J., Coello Coello, C.A., Luna, F., Alba, E.: SMPSO: A new PSO-based metaheuristic for multi-objective optimization. In: IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, pp 66–73 (2009).  https://doi.org/10.1109/MCDM.2009.4938830
  14. 14.
    Oduguwa, A., Tiwari, A., Fiorentino, S., Roy, R.: Multi-objective optimisation of the protein-ligand docking problem in drug discovery. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO 2006, pp. 1793–1800 (2006).  https://doi.org/10.1145/1143997.1144287
  15. 15.
    Pagadala, N.S., Syed, K., Tuszynski, J.: Software for molecular docking: a review. Biophys. Rev. 9(2), 91–102 (2017).  https://doi.org/10.1007/s12551-016-0247-1CrossRefGoogle Scholar
  16. 16.
    Peh, S.C.W., Hong, J.L.: Glsdock - drug design using guided local search. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A., Torre, C.M., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S. (eds.) Computational Science and Its Applications - ICCSA 2016, pp. 11–21. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  17. 17.
    Abreu, R.M., Froufe, H.J., Queiroz, M.J., Ferreira, I.C.: Selective flexibility of side-chain residues improves VEGFR-2 docking score using autodock vina. Chem. Biol. Drug. Des. 79(4), 530–4 (2012)CrossRefGoogle Scholar
  18. 18.
    Ru, X., Song, C., Lin, Z.: A genetic algorithm encoded with the structural information of amino acids and dipeptides for efficient conformational searches of oligopeptides. J. Comput. Chem. 37(13), 1214–1222 (2016).  https://doi.org/10.1002/jcc.24311CrossRefGoogle Scholar
  19. 19.
    Zhang, Q., Li, H.: Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007).  https://doi.org/10.1109/TEVC.2007.892759CrossRefGoogle Scholar
  20. 20.
    Zhao, Y., Liu, H.L.: Multi-objective particle swarm optimization algorithm based on population decomposition. In: Yin, H., Tang, K., Gao, Y., Klawonn, F., Lee, M., Weise, T., Li, B., Yao, X. (eds.) Intelligent Data Engineering and Automated Learning - IDEAL 2013, pp. 463–470. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar
  22. 22.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.: Performance assessment ofmultiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Esteban López Camacho
    • 1
  • María Jesús García-Godoy
    • 1
  • Javier Del Ser
    • 2
  • Antonio J. Nebro
    • 1
  • José F. Aldana-Montes
    • 1
  1. 1.Departamento de Lenguajes y Ciencias de la ComputaciónUniversity of MálagaMálagaSpain
  2. 2.TECNALIA, Univ. of the Basque Country (UPV/EHU) and Basque Center for Applied Mathematics (BCAM)BizkaiaSpain

Personalised recommendations