Terrorism and War: Twitter Cascade Analysis

  • V. Carchiolo
  • A. Longheu
  • M. Malgeri
  • G. Mangioni
  • M. Previti
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 798)


Misinformation spreading over online social networks is becoming more and more critical due to the huge amount of information sources whose reliability is hard to establish; moreover, several humans psychology factors as echo chambers and biased searches, plus the intensive use of bot, makes the scenario difficult to cope with. Unprecedented opportunities of gathering data to enhance knowledge though raised, even if the threat of assuming a fake as real or viceversa has been hugely increased, so urgent questions are how to ascertain the truth, and how to somehow limit the flooding process of fakes. In this work, we investigate on the diffusion of true, false and mixed news through the Twitter network using a free large dataset of fact-checked rumor cascades, that were also categorized into specific topics (here, we focus on Terrorism and War). Our goal is to assess how news spread depending on their veracity and we also try to provide an analytic formulation of spreading process via a differential equation that approximates this phenomenon by properly setting the retweet rate.


  1. 1.
    McKernon, E.: Fake news and the public (1925)Google Scholar
  2. 2.
    Garimella, K., Morales, G.D.F., Gionis, A., Mathioudakis, M.: Quantifying controversy on social media. Trans. Soc. Comput. 1(1), 3:1–3:27 (2018)CrossRefGoogle Scholar
  3. 3.
    Metzger, M.J., Flanagin, A.J., Medders, R.B.: Social and heuristic approaches to credibility evaluation online. J. Commun. 60(3) 413–439 (2010)CrossRefGoogle Scholar
  4. 4.
    Schulz-Hardt, S., Frey, D., Lüthgens, C., Moscovici, S.: Biased information search in group decision making. J. Pers. Soc. Psychol. 78(4), 655–669 (2000)CrossRefGoogle Scholar
  5. 5.
    Ferrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A.: The rise of social bots. Commun. ACM 59(7), 96–104 (2016)CrossRefGoogle Scholar
  6. 6.
    Varol, O., Ferrara, E., Davis, C.A., Menczer, F., Flammini, A.: Online human-bot interactions: detection, estimation, and characterization. CoRR abs/1703.03107 (2017)Google Scholar
  7. 7.
    Sztompka, P.: Trust: A Sociological Theory. Cambridge University Press, Cambridge (1999)Google Scholar
  8. 8.
    Artz, D., Gil, Y.: A survey of trust in computer science and the semantic web. Web Semant. Sci. Serv. Agents World Wide Web 5(2), 58–71 (2007)CrossRefGoogle Scholar
  9. 9.
    McKnight, D.H., Chervany, N.L.: The meanings of trust. Technical report, Minneapolis, USA (1996)Google Scholar
  10. 10.
    Gupta, M., Zhao, P., Han, J.: Evaluating Event Credibility on Twitter, pp. 153–164 (2012)CrossRefGoogle Scholar
  11. 11.
    Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys 2007, pp. 17–24. ACM, New York (2007)Google Scholar
  12. 12.
    Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Trust assessment: a personalized, distributed, and secure approach. Concurr. Comput. Pract. Exp. 24(6), 605–617 (2012)CrossRefGoogle Scholar
  13. 13.
    Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Users’ attachment in trust networks: reputation vs. effort. IJBIC 5(4), 199–209 (2013)CrossRefGoogle Scholar
  14. 14.
    Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: The cost of trust in the dynamics of best attachment. Comput. Inform. 34(1), 167–184 (2015)zbMATHGoogle Scholar
  15. 15.
    Buzzanca, M., Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Direct trust assignment using social reputation and aging. J. Ambient. Intell. Hum. Comput. 8(2), 167–175 (2017)CrossRefGoogle Scholar
  16. 16.
    Bedi, P., Vashisth, P.: Empowering recommender systems using trust and argumentation. Inf. Sci. 279, 569–586 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jiang, S., Zhang, J., Ong, Y.S.: An evolutionary model for constructing robust trust networks. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, AAMAS 2013, Richland, SC, pp. 813–820. International Foundation for Autonomous Agents and Multiagent Systems (2013)Google Scholar
  18. 18.
    Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)CrossRefGoogle Scholar
  19. 19.
    Schwarz, N., Sanna, L.J., Skurnik, I., Yoon, C.: Metacognitive experiences and the intricacies of setting people straight: implications for debiasing and public information campaigns. In: Advances in Experimental Social Psychology, vol. 39, pp. 127–161. Academic Press (2007)Google Scholar
  20. 20.
    Ecker, U.K., Hogan, J.L., Lewandowsky, S.: Reminders and repetition of misinformation: Helping or hindering its retraction? J. Appl. Res. Mem. Cogn. 6(2), 185–192 (2017)CrossRefGoogle Scholar
  21. 21.
  22. 22.
  23. 23.
    Vosoughi, S., Roy, D., Aral, S.: Twitter data set - supplementary material.
  24. 24.
    Goel, S., Watts, D.J., Goldstein, D.G.: The structure of online diffusion networks. In: Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 623–638. ACM (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • V. Carchiolo
    • 1
  • A. Longheu
    • 1
  • M. Malgeri
    • 1
  • G. Mangioni
    • 1
  • M. Previti
    • 1
  1. 1.Dip. Ingegneria Elettrica, Elettronica e InformaticaUniversità degli Studi di CataniaCataniaItaly

Personalised recommendations