Advertisement

Multiagent System for Semantic Categorization of Places Mean the Use of Distributed Surveillance Cameras

  • José Carlos Rangel
  • Cristian PinzónEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 801)

Abstract

Surveillance systems are quite common in almost every building. The current dimension of these systems is huge and involves a great deal of hardware and human resources for achieving these objectives. This paper proposes the use of an agent-based architecture for helping in the categorization of the places where these are deployed. Proposal uses a deep learning model for evaluating the images captured by the cameras and then label the zone where the camera is located.

Keywords

Software-Agents Semantic-Categorization Deep-Learning 

References

  1. 1.
    Scene classification based on semantic labeling. Adv. RobotGoogle Scholar
  2. 2.
    LexToMap: lexical-based topological mapping. Adv. Robot. (2016)Google Scholar
  3. 3.
    Corchado, J.M., Bajo, J., Abraham, A.: GerAmi: improving healthcare delivery in geriatric residences. IEEE Intell. Syst. 23(2), 19–25 (2008)CrossRefGoogle Scholar
  4. 4.
    Carrascosa, C., Bajo, J., Julian, V., Corchado, J.M., Botti, V.: Hybrid multi-agent architecture as a real-time problem-solving model. Expert Syst. Appl. 34(1), 2–17 (2008)CrossRefGoogle Scholar
  5. 5.
    Li, T., De la Prieta Pintado, F., Corchado, J.M., Bajo, J.: Multi-source homogeneous data clustering for multi-target detection from cluttered background with misdetection. Appl. Soft Comput. 60, 436–446 (2017)CrossRefGoogle Scholar
  6. 6.
    Morente-Molinera, J.A., Kou, G., González-Crespo, R., Corchado, J.M., Herrera-Viedma, E.: Solving multi-criteria group decision making problems under environments with a high number of alternatives using fuzzy ontologies and multi-granular linguistic modelling methods. Knowl.-Based Syst. (2017)Google Scholar
  7. 7.
    Wang, X., Li, T., Sun, S., Corchado, J.M.: A survey of recent advances in particle filters and remaining challenges for multitarget tracking. Sensors 17(12) (2017)CrossRefGoogle Scholar
  8. 8.
    Li, T.-C., Su, J.-Y., Liu, W., Corchado, J.M.: Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond. Front. Inf. Technol. Electron. Eng. 18, 1913–1939 (2017)CrossRefGoogle Scholar
  9. 9.
    Oliveira, T., Neves, J., Novais, P.: Guideline formalization and knowledge representation for clinical decision support. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 1(2) (2012)Google Scholar
  10. 10.
    Nihan, C.E.: Healthier? More Efficient? Fairer? an overview of the main ethical issues raised by the use of Ubicomp in the workplace. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2(1) (2013)Google Scholar
  11. 11.
    Macek, K., Rojicek, J., Kontes, G., Rovas, D.V.: Black-box optimization for buildings and its enhancement by advanced communication infrastructure. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2(2) (2013)Google Scholar
  12. 12.
    Romero, S., Fardoun, H.M., Penichet, V.M.R., Gallud, J.A.: Tweacher: new proposal for online social networks impact in secondary education. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2(1) (2013)Google Scholar
  13. 13.
    Martinez-Martin, E., Escrig, M.T., Del Pobil, A.P.: A qualitative acceleration model based on intervals. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2(2) (2013)Google Scholar
  14. 14.
    Li, T., Sun, S.: Online adapting the magnitude of target birth intensity in the PHD filter. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2(4) (2013)Google Scholar
  15. 15.
    Teixido, M., et al.: Optimization of the virtual mouse HeadMouse to foster its classroom use by children with physical disabilities. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2(4) (2013)Google Scholar
  16. 16.
    García, O., Chamoso, P., Prieto, J., Rodríguez, S., De La Prieta, F.: A serious game to reduce consumption in smart buildings. Commun. Comput. Inf. Sci. 722, 481–493 (2017)Google Scholar
  17. 17.
    Sittón, I., Rodríguez, S.: Pattern extraction for the design of predictive models in industry 4. 0 (2017)Google Scholar
  18. 18.
    Chamoso, P., Rivas, A., Martín-Limorti, J.J., Rodríguez, S.: A hash based image matching algorithm for social networks. In: Advances in Intelligent Systems and Computing, vol. 619, pp. 183–190 (2018)Google Scholar
  19. 19.
    Corchado, J., Fyfe, C., Lees, B.: Unsupervised learning for financial forecasting. In: Proceedings of the IEEE/IAFE/INFORMS 1998 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No, 1998), pp. 259–263 (1998)Google Scholar
  20. 20.
    Corchado, J.M., Fyfe, C.: Unsupervised neural method for temperature forecasting. Artif. Intell. Eng. 13(4), 2–7 (1810)Google Scholar
  21. 21.
    Fyfe, C., Corchado, J.M.: Automating the construction of CBR systems using kernel methods. Int. J. Intell. Syst. 16(4) (2001)CrossRefGoogle Scholar
  22. 22.
    Fyfe, C., Corchado, J.: A comparison of Kernel methods for instantiating case based reasoning systems. Adv. Eng. Inform. 16(3) (2002)CrossRefGoogle Scholar
  23. 23.
    Corchado, J.M., Aiken, J.: Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev. 32(4) (2002)CrossRefGoogle Scholar
  24. 24.
    Glez-Bedia, M., Corchado, J.M., Corchado, E.S., Fyfe, C.: Analytical model for constructing deliberative agents. Int. J. Eng. Intell. Syst. Electr. Eng. Commun. 10(3) (2002)Google Scholar
  25. 25.
    Fdez-Riverola, F., Corchado, J.M.: CBR based system for forecasting red tides. Knowl.-Based Syst. 321–328 (2003)CrossRefGoogle Scholar
  26. 26.
    Corchado, J.M., Corchado, E.S., Aiken, J., Fyfe, C., Fernandez, F., Gonzalez, M.: Maximum likelihood hebbian learning based retrieval method for CBR systems. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 2689, pp. 107–121 (2003)Google Scholar
  27. 27.
    Corchado, J.M., Borrajo, M.L., Pellicer, M.A., Yáñez, J.C.: Neuro-symbolic system for business internal control. In: Industrial Conference on Data Mining, pp. 1–10 (2004)Google Scholar
  28. 28.
    Corchado, J.A., Aiken, J., Corchado, E.S., Lefevre, N., Smyth, T.: Quantifying the ocean’s CO2 budget with a CoHeL-IBR system. In: Proceedings of Advances in Case-Based Reasoning, vol. 3155, pp. 533–546 (2004)Google Scholar
  29. 29.
    Laza, R., Pavn, R., Corchado, J.M.: A reasoning model for CBR_BDI agents using an adaptable fuzzy inference system. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3040, pp. 96–106 (2004)CrossRefGoogle Scholar
  30. 30.
    Corchado, J.M., Pavón, J., Corchado, E.S., Castillo, L.F.: Development of CBR-BDI agents: a tourist guide application. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3155, pp. 547–559 (2004)Google Scholar
  31. 31.
    Méndez, J.R., Fdez-Riverola, F., Iglesias, E.L., Díaz, F., Corchado, J.M.: Tracking concept drift at feature selection stage in SpamHunting: an anti-spam instance-based reasoning system. In: Lecture Notes in Computer Science (Including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4106 (2006)Google Scholar
  32. 32.
    Fdez-Rtverola, F., Corchado, J.M.: FSfRT: forecasting system for red tides. Appl. Intell. 21(3) (2004)Google Scholar
  33. 33.
    Méndez, J.R., Fdez-Riverola, F., Díaz, F., Iglesias, E.L., Corchado, J.M.: A comparative performance study of feature selection methods for the anti-spam filtering domain. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4065 (2006)Google Scholar
  34. 34.
    Fernández-Riverola, F., Díaz, F., Corchado, J.M.: Reducing the memory size of a fuzzy case-based reasoning system applying rough set techniques. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(1) (2006)Google Scholar
  35. 35.
    Glez-Peñaa, D., Díaz, F., Hernández, J.M., Corchado, J.M., Fdez-Riverola, F.: geneCBR: a translational tool for multiple-microarray analysis and integrative information retrieval for aiding diagnosis in cancer research. BMC Bioinform. 10 (2009)CrossRefGoogle Scholar
  36. 36.
    Mata, A., Corchado, J.M.: Forecasting the probability of finding oil slicks using a CBR system. Expert Syst. Appl. 36(4) (2008)CrossRefGoogle Scholar
  37. 37.
    Tapia, D.I., Corchado, J.M.: An ambient intelligence based multi-agent system for alzheimer health care. Int. J. Ambient Comput. Intell. 1(1), 15–26 (2009)CrossRefGoogle Scholar
  38. 38.
    Baruque, B., Corchado, E., Mata, A., Corchado, J.M.: A forecasting solution to the oil spill problem based on a hybrid intelligent system. Inf. Sci. 180(10) (2009)CrossRefGoogle Scholar
  39. 39.
    Rodríguez, S., et al.: People detection and stereoscopic analysis using MAS. In: Proceedings of INES 2010-14th International Conference on Intelligent Engineering Systems (2010)Google Scholar
  40. 40.
    Rodríguez, S., de la Prieta, F., Tapia, D.I., Corchado, J.M.: Agents and computer vision for processing stereoscopic images. In: Lecture Notes in Computer Scienc. (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6077 (2010)Google Scholar
  41. 41.
    García, E., Rodríguez, S., Martín, B., Zato, C., Pérez, B.: MISIA: middleware infrastructure to simulate intelligent agents. Adv. Intell. Soft Comput. (2011)Google Scholar
  42. 42.
    Costa, Â., Novais, P., Corchado, J.M., Neves, J.: Increased performance and better patient attendance in an hospital with the use of smart agendas. Log. J. IGPL 20(4) (2012)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Tapia, D.I., Fraile, J.A., Rodríguez, S., Alonso, R.S., Corchado, J.M.: Integrating hardware agents into an enhanced multi-agent architecture for ambient intelligence systems. Inf. Sci. 222 (2011)CrossRefGoogle Scholar
  44. 44.
    Coria, J.A.G., Castellanos-Garzón, J.A., Corchado, J.M.: Intelligent business processes composition based on multi-agent systems. Expert Syst. Appl. (2013)Google Scholar
  45. 45.
    Li, T., Sun, S., Corchado, J.M., Siyau, M.F.: A particle dyeing approach for track continuity for the SMC-PHD filter. In: FUSION 2014-17th International Conference on Information Fusion (2014)Google Scholar
  46. 46.
    Choon, Y.W., et al.: Differential bees flux balance analysis with OptKnock for in silico microbial strains optimization. PLoS One 9(7) (2014)CrossRefGoogle Scholar
  47. 47.
    Redondo-Gonzalez, E., et al.: Bladder carcinoma data with clinical risk factors and molecular markers: a cluster analysis. BioMed Res. Int. (2015)Google Scholar
  48. 48.
    Li, T., Sun, S., Corchado, J.M., Siyau, M.F.: Random finite set-based Bayesian filters using magnitude-adaptive target birth intensity. In: FUSION 2014-17th International Conference on Information Fusion (2014)Google Scholar
  49. 49.
    Li, T., Sun, S.: Bolić, M., Corchado, J.M.: Algorithm design parallel implementation SMC-PHD filter. Sig. Process. 119, 115–127 (2016)Google Scholar
  50. 50.
    Lima, A.C.E.S., de Castro, L.N., Corchado, J.M.: A polarity analysis framework for Twitter messages. Appl. Math. Comput. 270 (2015)CrossRefGoogle Scholar
  51. 51.
    Abras, S., Kieny, C., Ploix, S., Wurtz, F.: MAS architecture for energy management: developing smart networks with JADE platform. In: 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), pp. 1–6 (2013)Google Scholar
  52. 52.
    Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding, June 2014Google Scholar
  53. 53.
    Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Grupo de Investigación ROBOTSiSUniversidad Tecnológica de PanamáSantiago de VeraguasPanama

Personalised recommendations