Advertisement

A Data Mining Approach Applied to Wireless Sensor Neworks in Greenhouses

  • José A. Castellanos-GarzónEmail author
  • Yeray Mezquita Martín
  • José Luis Jaimes S.
  • Santiago M. López G.
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 801)

Abstract

This research presents an innovative multi-agent system based on virtual organizations. It has been designed to manage the information collected by wireless sensor networks for knowledge discovery and decision making in greenhouses. The developed multi-agent system allowed us to take decisions on the basis of the analysis of the historical data obtained from sensors. The proposed approach improves the efficiency of greenhouses by optimizing the use of resources.

Keywords

Agents Adaptivity IoT Greenhouse Crop optimization Data mining 

Notes

Acknowledgements

This work has been supported by the project “IOTEC: Development of Technological Capacities around the Industrial Application of Internet of Things (IoT)”. 0123_IOTEC_3_E. Project financed with FEDER funds, Interreg Spain-Portugal (PocTep).

References

  1. 1.
    Shrouf, F., Miragliotta, G.: Energy management based on Internet of Things: practices and framework for adoption in production management. J. Clean. Prod. 100, 235–246 (2015)Google Scholar
  2. 2.
    Fang, S., Da Xu, L., Zhu, Y., Ahati, J., Pei, H., Yan, J., Liu, Z.: An integrated system for regional environmental monitoring and management based on Internet of Things. IEEE Trans. Industr. Inf. 10(2), 1596–1605 (2014)Google Scholar
  3. 3.
    Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A.: Security, privacy and trust in Internet of Things: the road ahead. Comput. Netw. 76, 146–164 (2015)Google Scholar
  4. 4.
    Mumtaz, S., Alsohaily, A., Pang, Z., Rayes, A., Tsang, K.F., Rodriguez, J.: Massive Internet of Things for industrial applications: addressing wireless IIoT connectivity challenges and ecosystem fragmentation. IEEE Ind. Electron. Mag. 11(1), 28–33 (2017)Google Scholar
  5. 5.
    Li, T., Sun, S., Bolić, M., Corchado, J.M.: Algorithm design for parallel implementation of the SMC-PHD filter. Sig. Process. 119, 115–127 (2016).  https://doi.org/10.1016/j.sigpro.2015.07.013Google Scholar
  6. 6.
    Lima, A.C.E.S., De Castro, L.N., Corchado, J.M.: A polarity analysis framework for Twitter messages. Appl. Math. Comput. 270, 756–767 (2015).  https://doi.org/10.1016/j.amc.2015.08.059Google Scholar
  7. 7.
    Redondo-Gonzalez, E., De Castro, L.N., Moreno-Sierra, J., Maestro De Las Casas, M.L., Vera-Gonzalez, V., Ferrari, D.G., Corchado, J.M.: Bladder carcinoma data with clinical risk factors and molecular markers: a cluster analysis. BioMed Res. Int. (2015).  https://doi.org/10.1155/2015/168682Google Scholar
  8. 8.
    Li, T., Sun, S., Corchado, J.M., Siyau, M.F.: Random finite set-based Bayesian filters using magnitude-adaptive target birth intensity. In: FUSION 2014 - 17th International Conference on Information Fusion (2014). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84910637788&partnerID=40&md5=bd8602d6146b014266cf07dc35a681e0
  9. 9.
    Choon, Y.W., Mohamad, M.S., Deris, S., Illias, R.M., Chong, C.K., Chai, L.E., Omatu, S., Corchado, J.M.: Differential bees flux balance analysis with OptKnock for in silico microbial strains optimization. PLoS ONE 9(7) (2014).  https://doi.org/10.1371/journal.pone.0102744Google Scholar
  10. 10.
    Li, T., Sun, S., Corchado, J.M., Siyau, M.F.: A particle dyeing approach for track continuity for the SMC-PHD filter. In: FUSION 2014 - 17th International Conference on Information Fusion (2014). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84910637583&partnerID=40&md5=709eb4815eaf544ce01a2c21aa749d8f
  11. 11.
    Coria, J.A.G., Castellanos-Garzón, J.A., Corchado, J.M.: Intelligent business processes composition based on multi-agent systems. Expert Syst. Appl. 41(4 PART 1), 1189–1205 (2014).  https://doi.org/10.1016/j.eswa.2013.08.003Google Scholar
  12. 12.
    Tapia, D.I., Fraile, J.A., Rodríguez, S., Alonso, R.S., Corchado, J.M.: Integrating hardware agents into an enhanced multi-agent architecture for ambient intelligence systems. Inf. Sci. 222, 47–65 (2013).  https://doi.org/10.1016/j.ins.2011.05.002Google Scholar
  13. 13.
    Costa, Â., Novais, P., Corchado, J.M., Neves, J.: Increased performance and better patient attendance in a hospital with the use of smart agendas. Logic J. IGPL 20(4), 689–698 (2012).  https://doi.org/10.1093/jigpal/jzr021MathSciNetGoogle Scholar
  14. 14.
    García, E., Rodríguez, S., Martín, B., Zato, C., Pérez, B.: MISIA: middleware infrastructure to simulate intelligent agents. Advances in Intelligent and Soft Computing, vol. 91 (2011).  https://doi.org/10.1007/978-3-642-19934-9_14Google Scholar
  15. 15.
    Rodríguez, S., De La Prieta, F., Tapia, D.I., Corchado, J.M.: Agents and computer vision for processing stereoscopic images. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNAI, vol. 6077 (2010).  https://doi.org/10.1007/978-3-642-13803-4_12Google Scholar
  16. 16.
    Rodríguez, S., Gil, O., De La Prieta, F., Zato, C., Corchado, J.M., Vega, P., Francisco, M.: People detection and stereoscopic analysis using MAS. In: INES 2010 - 14th International Conference on Intelligent Engineering Systems, Proceedings (2010).  https://doi.org/10.1109/INES.2010.5483855
  17. 17.
    Baruque, B., Corchado, E., Mata, A., Corchado, J.M.: A forecasting solution to the oil spill problem based on a hybrid intelligent system. Inf. Sci. 180(10), 2029–2043 (2010).  https://doi.org/10.1016/j.ins.2009.12.032Google Scholar
  18. 18.
    Tapia, D.I., Corchado, J.M.: An ambient intelligence based multi-agent system for alzheimer health care. International J. Ambient Comput. Intell. 1(1), 15–26 (2009).  https://doi.org/10.4018/jaci.2009010102Google Scholar
  19. 19.
    Mata, A., Corchado, J.M.: Forecasting the probability of finding oil slicks using a CBR system. Expert Syst. Appl. 36(4), 8239–8246 (2009).  https://doi.org/10.1016/j.eswa.2008.10.003Google Scholar
  20. 20.
    Glez-Peña, D., Díaz, F., Hernández, J.M., Corchado, J.M., Fdez-Riverola, F.: geneCBR: a translational tool for multiple-microarray analysis and integrative information retrieval for aiding diagnosis in cancer research. BMC Bioinform. 10 (2009).  https://doi.org/10.1186/1471-2105-10-187Google Scholar
  21. 21.
    Fernández-Riverola, F., Díaz, F., Corchado, J.M.: Reducing the memory size of a Fuzzy case-based reasoning system applying rough set techniques. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(1), 138–146 (2007).  https://doi.org/10.1109/TSMCC.2006.876058Google Scholar
  22. 22.
    Méndez, J.R., Fdez-Riverola, F., Díaz, F., Iglesias, E.L., Corchado, J.M.: A comparative performance study of feature selection methods for the anti-spam filtering domain. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNAI, vol. 4065, 106–120 (2006). https://www.scopus.com/inward/record.uri?eid=2-s2.0-33746435792&partnerID=40&md5=25345ac884f61c182680241828d448c5Google Scholar
  23. 23.
    Méndez, J.R., Fdez-Riverola, F., Iglesias, E.L., Díaz, F., Corchado, J.M.: Tracking concept drift at feature selection stage in SpamHunting: an anti-spam instance-based reasoning system. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNAI, vol. 4106, pp. 504–518 (2006). https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750974465&partnerID=40&md5=f468552f565ecc3af2d3ca6336e09cc2Google Scholar
  24. 24.
    Fdez-Rtverola, F., Corchado, J.M.: FSfRT: forecasting system for red tides. Appl. Intell. 21(3), 251–264 (2004).  https://doi.org/10.1023/B:APIN.0000043558.52701.b1Google Scholar
  25. 25.
    Corchado, J.M., Pavón, J., Corchado, E.S., Castillo, L.F.: Development of CBR-BDI agents: a tourist guide application. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3155, pp. 547–559 (2004).  https://doi.org/10.1007/978-3-540-28631-8
  26. 26.
    Laza, R., Pavn, R., Corchado, J.M.: A reasoning model for CBR_BDI agents using an adaptable fuzzy inference system. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3040, pp. 96–106. Springer, Heidelberg (2004)Google Scholar
  27. 27.
    Corchado, J.A., Aiken, J., Corchado, E.S., Lefevre, N., Smyth, T.: Quantifying the Ocean’s CO2 budget with a CoHeL-IBR system. In: Advances in Case-Based Reasoning, Proceedings, vol. 3155, pp. 533–546 (2004)Google Scholar
  28. 28.
    Corchado, J.M., Borrajo, M.L., Pellicer, M.A., Yáñez, J.C.: Neuro-symbolic system for business internal control. In: Industrial Conference on Data Mining, pp. 1–10 (2004).  https://doi.org/10.1007/978-3-540-30185-1_1Google Scholar
  29. 29.
    Corchado, J.M., Corchado, E.S., Aiken, J., Fyfe, C., Fernandez, F., Gonzalez, M.: Maximum likelihood hebbian learning based retrieval method for CBR systems. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 2689, pp. 107–121 (2003).  https://doi.org/10.1007/3-540-45006-8_11
  30. 30.
    Fdez-Riverola, F., Corchado, J.M.: CBR based system for forecasting red tides. Knowl. Based Syst. 16(5–6), 321–328 (2003).  https://doi.org/10.1016/S0950-7051(03)00034-0Google Scholar
  31. 31.
    Glez-Bedia, M., Corchado, J.M., Corchado, E.S., Fyfe, C.: Analytical model for constructing deliberative agents. Int. J. Eng. Intell. Syst. Electr. Eng. Commun. 10(3), 173 (2002)Google Scholar
  32. 32.
    Corchado, J.M., Aiken, J.: Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev. 32(4), 307–313 (2002).  https://doi.org/10.1109/tsmcc.2002.806072Google Scholar
  33. 33.
    Fyfe, C., Corchado, J.: A comparison of Kernel methods for instantiating case based reasoning systems. Adv. Eng. Inform. 16(3), 165–178 (2002).  https://doi.org/10.1016/S1474-0346(02)00008-3Google Scholar
  34. 34.
    Fyfe, C., Corchado, J.M.: Automating the construction of CBR systems using kernel methods. Int. J. Intell. Syst. 16(4), 571–586 (2001).  https://doi.org/10.1002/int.1024zbMATHGoogle Scholar
  35. 35.
    Li, T.-C., Su, J.-Y., Liu, W., Corchado, J.M.: Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond. Front. Inf. Technol. Electron. Eng. 18(12), 1913–1939 (2017)Google Scholar
  36. 36.
    Wang, X., Li, T., Sun, S., Corchado, J.M.: A survey of recent advances in particle filters and remaining challenges for multitarget tracking. Sensors (Switzerland), 17(12), Article no. 2707 (2017)Google Scholar
  37. 37.
    Morente-Molinera, J.A., Kou, G., González-Crespo, R., Corchado, J.M., Herrera-Viedma, E.: Solving multi-criteria group decision making problems under environments with a high number of alternatives using fuzzy ontologies and multi-granular linguistic modelling methods. Knowl. Based Syst. 137, 54–64 (2017)Google Scholar
  38. 38.
    Pinto, T., Gazafroudi, A.S., Prieto-Castrillo, F., Santos, G., Silva, F., Corchado, J.M., Vale, Z.: Reserve costs allocation model for energy and reserve market simulation. In: 2017 19th International Conference on Intelligent System Application to Power Systems, ISAP 2017, art. no. 8071410 (2017)Google Scholar
  39. 39.
    Chamoso, P., Rivas, A., Martín-Limorti, J.J., Rodríguez, S.: A hash based image matching algorithm for social networks. Advances in Intelligent Systems and Computing, vol. 619, pp. 183–190 (2018).  https://doi.org/10.1007/978-3-319-61578-3_18Google Scholar
  40. 40.
    Sittón, I., Rodríguez, S.: Pattern extraction for the design of predictive models in Industry 4.0. In: International Conference on Practical Applications of Agents and Multi-Agent Systems, pp. 258–261 (2017)Google Scholar
  41. 41.
    García, O., Chamoso, P., Prieto, J., Rodríguez, S., De La Prieta, F.: A serious game to reduce consumption in smart buildings. Communications in Computer and Information Science, vol. 722, pp. 481–493 (2017).  https://doi.org/10.1007/978-3-319-60285-1_41Google Scholar
  42. 42.
    Palomino, C.G., Nunes, C.S., Silveira, R.A., González, S.R., Nakayama, M.K.: Adaptive agent-based environment model to enable the teacher to create an adaptive class. Advances in Intelligent Systems and Computing, vol. 617 (2017).  https://doi.org/10.1007/978-3-319-60819-8_3Google Scholar
  43. 43.
    Canizes, B., Pinto, T., Soares, J., Vale, Z., Chamoso, P., Santos, D.: Smart city: A GECAD-BISITE energy management case study. In: 15th International Conference on Practical Applications of Agents and Multi-Agent Systems PAAMS 2017, Trends in Cyber-Physical Multi-Agent Systems, vol. 2, pp. 92–100 (2017).  https://doi.org/10.1007/978-3-319-61578-3_9Google Scholar
  44. 44.
    Chamoso, P., de La Prieta, F., Eibenstein, A., Santos-Santos, D., Tizio, A., Vittorini, P.: A device supporting the self management of tinnitus. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNCS, vol. 10209, pp. 399–410 (2017).  https://doi.org/10.1007/978-3-319-56154-7_36Google Scholar
  45. 45.
    Román, J.A., Rodríguez, S., de da Prieta, F.: Improving the distribution of services in MAS. Communications in Computer and Information Science, vol. 616 (2016).  https://doi.org/10.1007/978-3-319-39387-2_4Google Scholar
  46. 46.
    Durik, B.O.: Organisational metamodel for large-scale multi-agent systems: first steps towards modelling organisation dynamics. Adv. Distrib. Comput. Artif. Intell. J. (ADCAIJ) 6(3), 17 (2017)Google Scholar
  47. 47.
    Bremer, J., Lehnhoff, S.: Decentralized coalition formation with agent-based combinatorial heuristics. Adv. Distrib. Comput. Artif. Intell. J. (ADCAIJ) 6(3), 29 (2017)Google Scholar
  48. 48.
    Cardoso, R.C., Bordini, R.H: A multi-agent extension of a hierarchical task network planning formalism. Adv. Distrib. Comput. Artif. Intell. J. (ADCAIJ) 6(2), 5 (2017)Google Scholar
  49. 49.
    Gonçalves, E., Cortés, M., Oliveira, M.D., Veras, N., Falcão, M., Castro, J.: An analysis of software agents, environments and applications school: retrospective, relevance, and trends. Adv. Distrib. Comput. Artif. Intell. J. (ADCAIJ) 6(2), 19 (2017)Google Scholar
  50. 50.
    Teixeira, E.P., Goncalves, E.M.N., Adamatti, D.F.: Ulises: a agent-based system for timbre classification. Adv. Distrib. Comput. Artif. Intell. J. (ADCAIJ) 7(1), 29 (2017)Google Scholar
  51. 51.
    de Castro, L.F.S., Alves, G.V., Borges, A.P.: Using trust degree for agents in order to assign spots in a Smart Parking. Adv. Distrib. Comput. Artif. Intell. J. (ADCAIJ) 6(2) (2017)Google Scholar
  52. 52.
    Cunha, R., Billa, C., Adamatti, D.: Development of a graphical tool to integrate the Prometheus AEOlus methodology and Jason platform. Adv. Distrib. Comput. Artif. Intell. J. (ADCAIJ) 6(2), 57 (2017)Google Scholar
  53. 53.
    Ramos, J., Castellanos-Garzón, J.A., González-Briones, A., de Paz, J.F., Corchado, J.M.: An agent-based clustering approach for gene selection in gene expression microarray. Interdiscip. Sci. Comput. Life Sci. 9(1), 1–13 (2017)Google Scholar
  54. 54.
    Castellanos-Garzón, J.A., Ramos, J.: A gene selection approach based on clustering for classification tasks in colon cancer. Adv. Distrib. Comput. Artif. Intell. Journal. 4(3), 1–10 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • José A. Castellanos-Garzón
    • 1
    Email author
  • Yeray Mezquita Martín
    • 1
  • José Luis Jaimes S.
    • 2
  • Santiago M. López G.
    • 2
  1. 1.BISITE Digital Innovation HubUniversity of Salamanca, Edificio Multiusos I+D+iSalamancaSpain
  2. 2.Instituto Universitario de Estudios de la Ciencia y la TecnologíaUniversity of SalamancaSalamancaSpain

Personalised recommendations