Advertisement

Implementation of Automated Pipelines to Generate Knowledge on Challenging Biological Queries

  • Noé VázquezEmail author
Conference paper
  • 242 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 801)

Abstract

The main objective of this work is the design and implementation of a reduced set of automated pipelines able to integrate a wide range of existing bioinformatics applications and libraries with the goal of delivering an easy-to-use resource, which can be further used to provide different answers to complex biological questions mainly related with nucleotide and amino acid sequences.

Keywords

Automated pipeline Software integration Nucleotide and amino acid sequences Biological queries 

References

  1. 1.
    Edwards, D., Stajich, J., Hansen, D. (eds.): Bioinformatics: tools and applications. Springer (2009)Google Scholar
  2. 2.
    Matos, S., Araújo, H., Oliveira, J.L.: Biomedical literature exploration through latent semantics. Adv. Distrib. Comput. Artif. Intell. J., ADCAIJ 2(2), 65 (2013)Google Scholar
  3. 3.
    Ramos, J., Castellanos-Garzón, J.A., de Paz, J.F., Corchado, J.M.: A data mining framework based on boundary-points for gene selection from DNA-microarrays: pancreatic Ductal Adenocarcinoma as a case study. Eng. Appl. Artif. Intell. 70, 92–108 (2018)CrossRefGoogle Scholar
  4. 4.
    Santos, A., Nogueira, R., Lourenço, A.: Applying a text mining framework to the extraction of numerical parameters from scientific literature in the biotechnology domain. Adv. Distrib. Comput. Artif. Intell. J., ADCAIJ 1(1), 1–8 (2012)Google Scholar
  5. 5.
    Castellanos-Garzón, J.A., Ramos, J., López-Sánchez, D., F. de Paz, J., Corchado, J.M.: An ensemble framework coping with instability in the gene selection process. Interdiscip. Sci.: Comput. Life Sci. 10, 12–23 (2018)Google Scholar
  6. 6.
    Ramos, J., López-Sánchez, D., Castellanos-Garzón, J.A., de Paz, J.F., Corchado, J.M.: A CBR framework with gradient boosting based feature selection for lung cancer subtype classification. Comput. Biol. Med. 86, 98–106. (2017)Google Scholar
  7. 7.
    Ramos, J., Castellanos-Garzón, J.A., González-Briones, A., de Paz, J.F., Corchado, J.M.: An agent-based clustering approach for gene selection in gene expression microarray. Interdiscip. Sci. Comput. Life Sci .9, 1–13 (2017)Google Scholar
  8. 8.
    Leipzig, J.: A review of bioinformatic pipeline frameworks. Brief. Bioinform. 18(3:1), 530–536 (2017)Google Scholar
  9. 9.
    Rice, P., Longden, I., Bleasby, A.: EMBOSS: the European molecular biology open software suite. Trends Genet. 16(6), 276–277 (2000)CrossRefGoogle Scholar
  10. 10.
    Quinlan, A.R., Hall, I.M.: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6), 841–842 (2010)CrossRefGoogle Scholar
  11. 11.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)CrossRefGoogle Scholar
  12. 12.
    Kapustin, Y., Souvorov, A., Tatusova, T., Lipman, D.: Splign: algorithms for computing spliced alignments with identification of paralogs. Biol. Direct 3, 20 (2008)CrossRefGoogle Scholar
  13. 13.
    Kiryutin, B., Souvorov, A., Tatusova, T.: ProSplign - protein to genomic alignment tool. manuscript in preparation. https://www.ncbi.nlm.nih.gov/sutils/static/prosplign/prosplign.html
  14. 14.
    Lourenço, A., Carreira, R.C., Glez-Peña, D., Méndez, J.R., Carneiro, S.A., Rocha, L.M., Díaz, F., Ferreira, E.C., Rocha, I.P., Fdez-Riverola, F., Rocha, M.: BioDR: semantic indexing networks for biomedical document retrieval. Expert Syst. Appl. 37(4), 3444–3453 (2010)CrossRefGoogle Scholar
  15. 15.
    Glez-Peña, D., Díaz, F., Hernández, J.M., Corchado, J.M., Fdez-Riverola, F.: geneCBR: a translational tool for multiple-microarray analysis and integrative information retrieval for aiding diagnosis in cancer research. BMC Bioinform. 10, 187 (2009)Google Scholar
  16. 16.
    López-Fernández, H., Reboiro-Jato, M., Pérez Rodríguez, J.A., Fdez-Riverola, F., Glez-Peña, D.: The artificial intelligence workbench: a retrospective review. Adv. Distrib. Comput. Artif. Intell. J. (ADCAIJ) 5(1), 73–85 (2016)Google Scholar
  17. 17.
    López-Fdez, H., Santos, H.M., Capelo, J.L., Fdez-Riverola, F., Glez-Peña, D., Reboiro-Jato, M.: Mass-up: an all-in-one open software application for MALDI-TOF mass spectrometry knowledge discovery. BMC Bioinform. 16, 318 (2015)CrossRefGoogle Scholar
  18. 18.
    Araújo, A.R., Reis, M., Rocha, H., Aguiar, B., Morales-Hojas, R., Macedo-Ribeiro, S., Fonseca, N.A., Reboiro-Jato, D., Reboiro-Jato, M., Fdez-Riverola, F., Vieira, C.P., Vieira, J.: The drosophila melanogaster methuselah gene: a novel gene with ancient functions. PLoS ONE 8(5), e63747 (2013)CrossRefGoogle Scholar
  19. 19.
    Aguiar, B., Vieira, B., Cunha, A.E., Fonseca, N.A., Reboiro-Jato, D., Reboiro-Jato, M., Fdez-Riverola, F., Raspé, O., Vieira, C.P.: Patterns of evolution at the gametophytic self-incompatibility Sorbus aucuparia (Pyrinae) S pollen genes support the non-self recognition by multiple factors model. J. Exp. Bot. 64(1), 2423–2434 (2013)CrossRefGoogle Scholar
  20. 20.
    Reboiro-Jato, D., Reboiro-Jato, M., Fdez-Riverola, F., Vieira, C.P., Fonseca, N.A., Vieira, J:. ADOPS - automatic detection of positively selected sites. J. Integr. Bioinform. 9(3), 18–32 (2016)Google Scholar
  21. 21.
    Vázquez, N., Vieira, C.P., Amorim, B.S.R., Torres, A., López-Fernández, H., Fdez-Riverola, F., Sousa, J.L.R., Reboiro-Jato, M., Vieira, J.: Large scale analyses and visualization of adaptive amino acid changes projects. Interdiscip. Sci. Comput. Life Sci. 10, 24 (2018)CrossRefGoogle Scholar
  22. 22.
    Chatr-Aryamontri, A., Oughtred, R., Boucher, L., Rust, J., Chang, C., Kolas, N.K., O’Donnell, L., Oster, S., Theesfeld, C., Sellam, A., Stark, C., Breitkreutz, B.J., Dolinski, K., Tyers, M.: The BioGRID interaction database: 2017 update. Nucleic Acids Res. 45(Database issue), D369–D379 (2017)Google Scholar
  23. 23.
    Gramates, L.S., Marygold, S.J., dos Santos, G., Urbano, J-M., Antonazzo, G., Matthews, B.B., Rey, A.J., Tabone, C.J., Crosby, M.A., Emmert, D.B., Falls, K., Goodman, J.L., Hu, Y., Ponting, L., Schroeder, A.J., Strelets, V.B., Thurmond, J., Zhou, P., The FlyBase Consortium: FlyBase at 25: looking to the future. Nucleic Acids Res. 45(D1), D663–D671 (2017)CrossRefGoogle Scholar
  24. 24.
    Persico, M., Ceol, A., Gavrila, C., Hoffmann, R., Florio, A., Cesareni, G.: HomoMINT: an inferred human network based on orthology mapping of protein interactions discovered in model organisms. BMC Bioinform. 6(Suppl 4), S21 (2005)CrossRefGoogle Scholar
  25. 25.
    Mosca, R., Céol, A., Aloy, P.: Interactome3D: adding structural details to protein networks. Nat. Methods 10(1), 47–53 (2013)CrossRefGoogle Scholar
  26. 26.
    Calderone, A., Castagnoli, L., Cesareni, G.: mentha: a resource for browsing integrated protein-interaction networks. Nat. Methods 10, 690 (2013)CrossRefGoogle Scholar
  27. 27.
    Alanis-Lobato, G., Andrade-Navarro, M.A., Schaefer, M.H.: HIPPIE v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks. Nucleic Acids Res. 45, D408–D414 (2017)CrossRefGoogle Scholar
  28. 28.
    Wu, J., Vallenius, T., Ovaska, K., Westermarck, J., Makela, T.P., Hautaniemi, S.: Integrated network analysis platform for protein-protein interactions. Nat. Methods 6, 75–77 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ESEI - Escuela Superior de Ingeniería InformáticaUniversidad de Vigo, Edificio PolitécnicoOurenseSpain
  2. 2.CINBIO - Centro de Investigaciones Biomédicas, Universidad de VigoVigoSpain

Personalised recommendations