Interaction Analysis in Asperger Through Virtual Media of Text Communication

  • Manuel A. ArroyaveEmail author
  • Luis F. Castillo
  • Gustavo A. Isaza
  • Manuel G. Bedia
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 801)


Currently the use of technologies by individuals with special mental conditions has shown significant impact. Social interaction is the foundation for the natural development and a component that requires different cognitive abilities. The study of the linguistic component through virtual media is a task that is approached from different methodologies allowing the extraction of additional information to the interaction process and fundamental for the work with therapists, patients and relatives. This article presents the development of a computational platform for the analysis of social interactions in terms of quantity and content of the information with the goal of approach the intervention and monitoring of mental pathologies. Indices to measure the cognitive development of an individual and Information Recuperation techniques has been adapted to the analysis context with the purpose of determine characteristics and find patterns in the linguistic and developmental components of the person. We evaluate interactions with 10 patients, 6 diagnosed with Asperger and 4 under Attention Deficit and Hyperactivity Disorder finding evidence of characteristics for these pathologies like abrupt change and redundancy towards conversation topics. The results suggest that these systems of computer mediated communication allow the discovering of therapeutic keys and boosting the person cognitive development.


Computational platform Social interaction Asperger 



Universidad de Caldas and Universidad Nacional de Colombia Sede Manizales project code 36715 Computational prototype for the fusion and analysis of large volumes of data in IoT (Internet of Things) environments based on Machine Learning techniques and secure architectures between sensors, to characterize the behavior and interaction of users in a Connected Home ecosystem.


  1. 1.
    Fernández-López, Á., Rodríguez-Fórtiz, M.J., Rodríguez-Almendros, M.L., Martínez-Segura, M.J.: Mobile learning technology based on iOS devices to support students with special education needs. Comput. Educ. 61, 77–90 (2013). Scholar
  2. 2.
    Martin, S., Sutcliffe, P., Griffiths, F., et al.: Effectiveness and impact of networked communication interventions in young people with mental health conditions: a systematic review. Patient Educ. Couns. 85 (2011). Scholar
  3. 3.
    van der Aa, C., Pollmann, M., Plaat, A., van der Gaag, R.: Computer-mediated communication in adults with high-functioning autism spectrum disorders and controls. Res. Autism Spectr. Disord. 23, 15–27 (2016). Scholar
  4. 4.
    Rogers, C.R., Nulty, K.L., Betancourt, M.A., DeThorne, L.S.: Causal effects on child language development: a review of studies in communication sciences and disorders. J. Commun. Disord. 57, 3–15 (2015). Scholar
  5. 5.
    Gabriela, M., Elizabeth, C., Estela, C.: Dimensiones del lenguaje: las dificultades del lenguaje en el nivel inicial. En: X Congreso Nacional y II Congreso Internacional “REPENSAR LA NIÑEZ EN EL SIGLO XXI”. Mendoza - Argentina, p. 9 (2008)Google Scholar
  6. 6.
    Mahmud, S., Iqbal, R., Doctor, F.: Cloud enabled data analytics and visualization framework for health-shocks prediction. Futur. Gener. Comput. Syst. 65, 169–181 (2016). Scholar
  7. 7.
    Shipstead, Z., Hicks, K.L., Engle, R.W.: J. Appl. Res. Mem. Cogn. 1, 217–219 (2012). Scholar
  8. 8.
    Stephanie, D., Julie, F.: Exploring links between language and cognition in autism spectrum disorders: Complement sentences, false belief, and executive functioning. J. Commun. Disord. 54, 15–31 (2015). Scholar
  9. 9.
    Campigotto, R., McEwen, R., Demmans Epp, C.: Especially social: exploring the use of an iOS application in special needs classrooms. Comput. Educ. 60, 74–86 (2013). Scholar
  10. 10.
    Hutchins, T.L., Prelock, P.A.: Using communication to reduce challenging behaviors in individuals with autism spectrum disorders and intellectual disability. Child Adolesc. Psychiatr. Clin. N Am. 23, 41–55 (2014)CrossRefGoogle Scholar
  11. 11.
    Davis-McShan, M.L.: Impact of Computer-Mediated Communication Duration on Adolescent Social Self-E cacy, Social Anxiety, and Depression. Walden University (2015)Google Scholar
  12. 12.
    Manning, C.D., Raghavan, P., Schutze, H.: An Introduction to Information Retrieval. Cambridge (2009)Google Scholar
  13. 13.
    Saint-Georges, C., Mahdhaoui, A., Chetouani, M., et al.: Do parents recognize autistic deviant behavior long before diagnosis? taking into account interaction using computational methods. PLoS ONE 6, 13 (2011). Scholar
  14. 14.
    Verano, P.L.Y.: El tópico perseverante en el discurso de niños diagnosticados con síndrome de asperger. Pontificia Universidad Católica del Perú PUCP (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fac. de Ingeniería, Dpto. de Sistemas e InformáticaUniv. de CaldasManizalesColombia
  2. 2.Fac. de Ingeniería, Dpto. de Sistemas e Informática, GITIR Grupo Investigación Tecnologías Información y RedesUniversidad de CaldasManizalesColombia
  3. 3.Facultad de Ingeniería y Arquitectura, GTA en Innovación y Desarrollo TecnológicoUniversidad Nacional de Colombia Sede Manizales, Departamento de Ingenierìa IndustrialManizalesColombia
  4. 4.Dpto. de Informática e Ingeniería de SistemasZaragozaSpain

Personalised recommendations