Advertisement

Stock Recommendation Platform Based on the Environment. INSIDER

  • Elena Hernández Nieves
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 801)

Abstract

The research presented in this paper, focuses on an investment recommendation system for businesses in order to provide investment related suggestions. For this purpose, it is identified different factors that could be extracted from the internet and from the information provided by the users. Currently, the research is in its initial stage, it has been reviewed the literature on data based techniques for investment recommendations, which will provide a complete overview of the methodologies, techniques and recent developments in this field. Once the state of the art has been reviewed, the platform model developed through a virtual organization of agents, called INSIDER.

Keywords

Recommender system Virtual organization of agents Hybrid A.I. algorithm Investment decisions 

References

  1. 1.
    Baruque, B., Corchado, E., Mata, A., Corchado, J.M.: A forecasting solution to the oil spill problem based on a hybrid intelligent system. Inf. Sci. 180(10), 2029–2043 (2010).  https://doi.org/10.1016/j.ins.2009.12.032CrossRefGoogle Scholar
  2. 2.
    Durik, B.O.: Organisational metamodel for large-scale multi-agent systems: first steps towards modelling organisation dynamics. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 6(3), Salamanca (2017)Google Scholar
  3. 3.
    Buciarelli, E., Silvestri, M., González, S.R.: Decision economics. In: Commemoration of the Birth Centennial of Herbert A. Simon 1916–2016 (Nobel Prize in Economics 1978): Distributed Computing and Artificial Intelligence, 13th International Conference. Advances in Intelligent Systems and Computing, vol. 475. Springer (2016)Google Scholar
  4. 4.
    Chamoso, P., Rivas, A., Martín-Limorti, J.J., Rodríguez, S.: A hash based image matching algorithm for social networks. In: Advances in Intelligent Systems and Computing, vol. 619, pp. 183–190 (2018).  https://doi.org/10.1007/978-3-319-61578-3_18Google Scholar
  5. 5.
    Choon, Y.W., Mohamad, M.S., Deris, S., Illias, R.M., Chong, C.K., Chai, L.E., Corchado, J.M.: Differential bees flux balance analysis with OptKnock for in silico microbial strains optimization. PLoS ONE 9(7) (2014).  https://doi.org/10.1371/journal.pone.0102744CrossRefGoogle Scholar
  6. 6.
    Corchado, J.A., Aiken, J., Corchado, E.S., Lefevre, N., Smyth, T.: Quantifying the Ocean’s CO2 budget with a CoHeL-IBR system. In: Advances in Case-Based Reasoning, Proceedings, vol. 3155, pp. 533–546Google Scholar
  7. 7.
    Corchado, J.M., Aiken, J.: Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev. 32(4), 307–313 (2002).  https://doi.org/10.1109/tsmcc.2002.806072CrossRefGoogle Scholar
  8. 8.
    Corchado, J.M., Fyfe, C.: Unsupervised neural method for temperature forecasting. Artif. Intell. Eng. 13(4), 351–357 (1999).  https://doi.org/10.1016/S0954-1810(99)00007-2CrossRefGoogle Scholar
  9. 9.
    Corchado, J.M., Borrajo, M.L., Pellicer, M.A., Yáñez, J.C.: Neuro-symbolic system for business internal control. In: Industrial Conference on Data Mining, pp. 1–10 (2004).  https://doi.org/10.1007/978-3-540-30185-1_1Google Scholar
  10. 10.
    Corchado, J.M., Corchado, E.S., Aiken, J., Fyfe, C., Fernandez, F., Gonzalez, M.: Maximum likelihood Hebbian learning based retrieval method for CBR systems. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 2689, pp. 107–121 (2003).  https://doi.org/10.1007/3-540-45006-8_11
  11. 11.
    Corchado, J.M., Pavón, J., Corchado, E. S., Castillo, L.F.: Development of CBR-BDI agents: a tourist guide application. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3155, pp. 547–559 (2004).  https://doi.org/10.1007/978-3-540-28631-8
  12. 12.
    Corchado, J., Fyfe, C., Lees, B.: Unsupervised learning for financial forecasting. In: Proceedings of the IEEE/IAFE/INFORMS 1998 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No. 98TH8367), pp. 259–263 (1998).  https://doi.org/10.1109/CIFER.1998.690316
  13. 13.
    Costa, Â., Novais, P., Corchado, J.M., Neves, J.: Increased performance and better patient attendance in a hospital with the use of smart agendas. Logic J. IGPL 20(4), 689–698 (2012).  https://doi.org/10.1093/jigpal/jzr021MathSciNetCrossRefGoogle Scholar
  14. 14.
    De La Prieta, F., Navarro, M., García, J.A., González, R., Rodríguez, S.: Multi-agent system for controlling a cloud computing environment. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNAI, vol. 8154 (2013).  https://doi.org/10.1007/978-3-642-40669-0_2CrossRefGoogle Scholar
  15. 15.
    Gonçalves, E., Cortés, M., De Oliveira, M., Veras, N., Falcão, M., Castro, J.: An analysis of software agents, environments and applications school: retrospective, relevance, and trends. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 6(2), Salamanca (2017)Google Scholar
  16. 16.
    Fdez-Riverola, F., Corchado, J.M.: CBR based system for forecasting red tides. Knowl. Based Syst. 16(5–6 SPEC.), 321–328 (2003).  https://doi.org/10.1016/S0950-7051(03)00034-0CrossRefGoogle Scholar
  17. 17.
    Fdez-Rtverola, F., Corchado, J.M.: FSfRT: forecasting system for red tides. Appl. Intell. 21(3), 251–264 (2004).  https://doi.org/10.1023/B:APIN.0000043558.52701.b1CrossRefGoogle Scholar
  18. 18.
    Fernández-Riverola, F., Díaz, F., Corchado, J.M.: Reducing the memory size of a fuzzy case-based reasoning system applying rough set techniques. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(1), 138–146 (2007).  https://doi.org/10.1109/TSMCC.2006.876058CrossRefGoogle Scholar
  19. 19.
    Fyfe, C., Corchado, J.: A comparison of kernel methods for instantiating case based reasoning systems. Adv. Eng. Inf. 16(3), 165–178 (2002).  https://doi.org/10.1016/S1474-0346(02)00008-3CrossRefGoogle Scholar
  20. 20.
    Fyfe, C., Corchado, J.M.: Automating the construction of CBR systems using kernel methods. Int. J. Intell. Syst. 16(4), 571–586 (2001).  https://doi.org/10.1002/int.1024CrossRefzbMATHGoogle Scholar
  21. 21.
    Coria, J.A.G., Castellanos-Garzón, J.A., Corchado, J.M.: Intelligent business processes composition based on multi-agent systems. Expert Syst. Appl. 41(4 Part 1), 1189–1205 (2014).  https://doi.org/10.1016/j.eswa.2013.08.003CrossRefGoogle Scholar
  22. 22.
    Glez-Bedia, M., Corchado, J.M., Corchado, E.S., Fyfe, C.: Analytical model for constructing deliberative agents. Int. J. Eng. Intell. Syst. Electr. Eng. Commun. 10(3) (2002)Google Scholar
  23. 23.
    Glez-Peña, D., Díaz, F., Hernández, J.M., Corchado, J.M., Fdez-Riverola, F.: geneCBR: a translational tool for multiple-microarray analysis and integrative information retrieval for aiding diagnosis in cancer research. BMC Bioinf. 10 (2009).  https://doi.org/10.1186/1471-2105-10-187CrossRefGoogle Scholar
  24. 24.
    Isaza, G., Mejía, M.H., Castillo, L.F., Morales, A., Duque, N.: Network management using multi-agents system. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 1(3), Salamanca (2012)Google Scholar
  25. 25.
    Han, F., Gu, T.Y., Ju, S.G.: An improved hybrid algorithm based on PSO and BP for feedforward neural networks. JDCTA: Int. J. Digital Content Technol. Appl. 5(2), 106–115 (2011)Google Scholar
  26. 26.
    Havandi, E., Shavandi, H., Ghanbari, A.: Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting. Knowl. Syst. 23(8), 800–808 (2010)CrossRefGoogle Scholar
  27. 27.
    Hüllermeier, E., Minor, M. (eds.): Case-Based Reasoning Research and Development: 22nd International Conference, ICCBR 2014, Cork, Ireland, 29 September–1 October 2014. Proceedings, vol. 8765. Springer (2015)Google Scholar
  28. 28.
    Bremer, J., Lehnhoff, S.: Decentralized coalition formation with agent-based combinatorial heuristics. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 6(3), Salamanca (2017)Google Scholar
  29. 29.
    Kaastra, I., Boyd, M.: Designing a neural network for forecasting financial and economic time series. Neurocomputing 10(3), 215–236 (1996)CrossRefGoogle Scholar
  30. 30.
    Laza, R., Pavn, R., Corchado, J.M.: A reasoning model for CBR_BDI agents using an adaptable fuzzy inference system. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3040, pp. 96–106. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    Li, B., Hoi, S.C.: Online portfolio selection: a survey. ACM Comput. Surv. (CSUR) 46(3), 35 (2014)zbMATHGoogle Scholar
  32. 32.
    Li, T., Sun, S., Bolić, M., Corchado, J.M.: Algorithm design for parallel implementation of the SMC-PHD filter. Signal Process. 119, 115–127 (2016).  https://doi.org/10.1016/j.sigpro.2015.07.013CrossRefGoogle Scholar
  33. 33.
    Li, T., Sun, S., Corchado, J.M., Siyau, M.F.: A particle dyeing approach for track continuity for the SMC-PHD filter. In: FUSION 2014 - 17th International Conference on Information Fusion (2014). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84910637583&partnerID=40&md5=709eb4815eaf544ce01a2c21aa749d8f
  34. 34.
    Li, T., Sun, S., Corchado, J.M., Siyau, M.F.: Random finite set-based Bayesian filters using magnitude-adaptive target birth intensity. In: FUSION 2014 - 17th International Conference on Information Fusion (2014). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84910637788&partnerID=40&md5=bd8602d6146b014266cf07dc35a681e0
  35. 35.
    Li, T.-C., Su, J.-Y., Liu, W., Corchado, J.M.: Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond. Front. Inf. Technol. Electr. Eng. 18(12), 1913–1939 (2017)CrossRefGoogle Scholar
  36. 36.
    Lima, A.C.E.S., De Castro, L.N., Corchado, J.M.: A polarity analysis framework for Twitter messages. Appl. Math. Comput. 270, 756–767 (2015).  https://doi.org/10.1016/j.amc.2015.08.059CrossRefGoogle Scholar
  37. 37.
    Mata, A., Corchado, J.M.: Forecasting the probability of finding oil slicks using a CBR system. Expert Syst. Appl. 36(4), 8239–8246 (2009).  https://doi.org/10.1016/j.eswa.2008.10.003CrossRefGoogle Scholar
  38. 38.
    Méndez, J.R., Fdez-Riverola, F., Díaz, F., Iglesias, E.L., Corchado, J.M.: A comparative performance study of feature selection methods for the anti-spam filtering domain. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNAI, vol. 4065, pp. 106–120 (2006). https://www.scopus.com/inward/record.uri?eid=2-s2.0-33746435792&partnerID=40&md5=25345ac884f61c182680241828d448c5CrossRefGoogle Scholar
  39. 39.
    Méndez, J.R., Fdez-Riverola, F., Iglesias, E.L., Díaz, F., Corchado, J.M.: Tracking concept drift at feature selection stage in SpamHunting: an anti-spam instance-based reasoning system. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNAI, vol. 4106, pp. 504–518 (2006). https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750974465&partnerID=40&md5=f468552f565ecc3af2d3ca6336e09cc2Google Scholar
  40. 40.
    Morente-Molinera, J.A., Kou, G., González-Crespo, R., Corchado, J.M., Herrera-Viedma, E.: Solving multi-criteria group decision making problems under environments with a high number of alternatives using fuzzy ontologies and multi-granular linguistic modelling methods. Knowl. Based Syst. 137, 54–64 (2017)CrossRefGoogle Scholar
  41. 41.
    Chamoso, P., De La Prieta, F.: Simulation environment for algorithms and agents evaluation. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 4(3), Salamanca (2015)Google Scholar
  42. 42.
    Palomino, C.G., Nunes, C.S., Silveira, R.A., González, S.R., Nakayama, M.K.: Adaptive agent-based environment model to enable the teacher to create an adaptive class. In: Advances in Intelligent Systems and Computing, vol. 617 (2017).  https://doi.org/10.1007/978-3-319-60819-8_3Google Scholar
  43. 43.
    Pinto, T., Gazafroudi, A.S., Prieto-Castrillo, F., Santos, G., Silva, F., Corchado, J.M., Vale, Z.: Reserve costs allocation model for energy and reserve market simulation. In: 2017 19th International Conference on Intelligent System Application to Power Systems, ISAP 2017, Art. no. 8071410 (2017)Google Scholar
  44. 44.
    Cardoso, R.C., Bordini, R.H.: A multi-agent extension of a hierarchical task network planning formalism. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 6(2), Salamanca (2017)Google Scholar
  45. 45.
    Redondo-Gonzalez, E., De Castro, L.N., Moreno-Sierra, J., De Las Casas, M.L.M., Vera-Gonzalez, V., Ferrari, D.G., Corchado, J.M.: Bladder carcinoma data with clinical risk factors and molecular markers: a cluster analysis. BioMed Res. Int. (2015).  https://doi.org/10.1155/2015/168682CrossRefGoogle Scholar
  46. 46.
    Silveira, R., Da Silva Bitencourt, G.K., Gelaim, T.Â., Marchi, J., De La Prieta, F.: Towards a model of open and reliable cognitive multiagent systems: dealing with trust and emotions. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 4(3), Salamanca (2015)Google Scholar
  47. 47.
    Rodríguez, S., De La Prieta, F., Tapia, D.I., Corchado, J.M.: Agents and computer vision for processing stereoscopic images. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), LNAI, vol. 6077 (2010).  https://doi.org/10.1007/978-3-642-13803-4_12Google Scholar
  48. 48.
    Rodríguez, S., Gil, O., De La Prieta, F., Zato, C., Corchado, J.M., Vega, P., Francisco, M.: People detection and stereoscopic analysis using MAS. In: INES 2010 - 14th International Conference on Intelligent Engineering Systems, Proceedings (2010).  https://doi.org/10.1109/INES.2010.5483855
  49. 49.
    Rodríguez, S., Tapia, D.I., Sanz, E., Zato, C., De La Prieta, F., Gil, O.: Cloud computing integrated into service-oriented multi-agent architecture. IFIP Adv. Inf. Commun. Technol. (AICT) 322 (2010).  https://doi.org/10.1007/978-3-642-14341-0_29CrossRefGoogle Scholar
  50. 50.
    Román, J.A., Rodríguez, S., de da Prieta, F.: Improving the distribution of services in MAS. Commun. Comput. Inf. Sci. 616 (2016).  https://doi.org/10.1007/978-3-319-39387-2_4Google Scholar
  51. 51.
    Sittón, I., Rodríguez, S.: Pattern extraction for the design of predictive models in industry 4.0. In: International Conference on Practical Applications of Agents and Multi-agent Systems, pp. 258–261 (2017)Google Scholar
  52. 52.
    Tapia, D.I., Corchado, J.M.: An ambient intelligence based multi-agent system for alzheimer health care. Int. J. Ambient Comput. Intell. 1(1), 15–26 (2009).  https://doi.org/10.4018/jaci.2009010102CrossRefGoogle Scholar
  53. 53.
    Tapia, D.I., Fraile, J.A., Rodríguez, S., Alonso, R.S., Corchado, J.M.: Integrating hardware agents into an enhanced multi-agent architecture for ambient intelligence systems. Inf. Sci. 222, 47–65 (2013).  https://doi.org/10.1016/j.ins.2011.05.002CrossRefGoogle Scholar
  54. 54.
    Wang, L.X.: Dynamical models of stock prices based on technical trading rules part I: the models. IEEE Trans. Fuzzy Syst. 23(4), 787–801 (2015)CrossRefGoogle Scholar
  55. 55.
    Wang, X., Li, T., Sun, S., Corchado, J.M.: A survey of recent advances in particle filters and remaining challenges for multitarget tracking. Sensors (Switzerland), 17(12), Art. no. 2707 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.BISITE Digital Innovation Hub, University of SalamancaSalamancaSpain

Personalised recommendations