Advertisement

Tree-Structured Hierarchical Dirichlet Process

  • Md. Hijbul Alam
  • Jaakko PeltonenEmail author
  • Jyrki Nummenmaa
  • Kalervo Järvelin
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 801)

Abstract

In many domains, document sets are hierarchically organized such as message forums having multiple levels of sections. Analysis of latent topics within such content is crucial for tasks like trend and user interest analysis. Nonparametric topic models are a powerful approach, but traditional Hierarchical Dirichlet Processes (HDPs) are unable to fully take into account topic sharing across deep hierarchical structure. We propose the Tree-structured Hierarchical Dirichlet Process, allowing Dirichlet process based topic modeling over a given tree structure of arbitrary size and height, where documents can arise at all tree nodes. Experiments on a hierarchical social message forum and a product reviews forum demonstrate better generalization performance than traditional HDPs in terms of ability to model new data and classify documents to sections.

Keywords

Hierarchical Dirichlet Processes Topic modeling Message forum 

References

  1. 1.
    Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. JMLR 3, 993–1022 (2003)zbMATHGoogle Scholar
  2. 2.
    Teh, Y., Jordan, M., Beal, M., Blei, D.: Hierarchical Dirichlet processes. J. Am. Stat. Assoc. 101, 1566–1581 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Blei, D., Griffiths, T., Jordan, M.: The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. J. ACM 57, 7:1–7:30 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Li, W., McCallum, A.: Pachinko allocation: DAG-structured mixture models of topic correlations. In: Proceedings of ICML, pp. 577–584. ACM (2006)Google Scholar
  5. 5.
    Adams, R., Ghahramani, Z., Jordan, M.: Tree-structured stick breaking for hierarchical data. In: Proceedings of NIPS, pp. 19–27. Curran Associates Inc. (2010)Google Scholar
  6. 6.
    Faisal, A., Gillberg, J., Leen, G., Peltonen, J.: Transfer learning using a nonparametric sparse topic model. Neurocomputing 112, 124–137 (2013)CrossRefGoogle Scholar
  7. 7.
    Xu, Y., Yin, J., Huang, J., Yin, Y.: Hierarchical topic modeling with automatic knowledge mining. Expert Syst. Appl. 103, 106–117 (2018)CrossRefGoogle Scholar
  8. 8.
    Kim, J., Kim, D., Kim, S., Oh, A.: Modeling topic hierarchies with the recursive Chinese restaurant process. In: Proceedings of CIKM, pp. 783–792. ACM (2012)Google Scholar
  9. 9.
    He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: Proceedings of WWW, pp. 507–517 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Md. Hijbul Alam
    • 1
  • Jaakko Peltonen
    • 1
    • 2
    Email author
  • Jyrki Nummenmaa
    • 1
  • Kalervo Järvelin
    • 1
  1. 1.University of TampereTampereFinland
  2. 2.Aalto UniversityEspooFinland

Personalised recommendations