Advertisement

Exploring Sustainable HCI Research Dimensions Through the Inclusive Innovation Framework

  • Tobias NyströmEmail author
  • Moyen Mustaquim
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 537)

Abstract

When frameworks and design principles for open innovation and open sustainability innovation (OSI) were established in earlier research, their foundations were originated from the expanded concepts of universal design (UD) from human-computer interaction (HCI) in a prescriptive form. This also was the basis of an inclusive innovation framework (IIF) aiming for a sustainable information system design. In this paper the IIF originating from the concept of combining UD and open innovation (OI) in promoting information technology enabling sustainability goals was analyzed together with OI and OSI frameworks. The role of OI in formulating the IIF was thereby strengthened, which in parallel helped recognizing the extended conceptions of sustainable HCI (SHCI) and its future research path through the use of IIF.

Keywords

Inclusive innovation framework Open innovation Open sustainability innovation Sustainability Sustainable HCI Universal design 

References

  1. 1.
    DiSalvo, C., Sengers, P., Brynjarsdóttir, H.: Mapping the landscape of sustainable HCI. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2010, pp. 1975–1984. ACM, New York (2010).  https://doi.org/10.1145/1753326.1753625
  2. 2.
    Mustaquim, M.M., Nyström, T.: Designing information systems for sustainability – the role of universal design and open innovation. In: Tremblay, M.C., VanderMeer, D., Rothenberger, M., Gupta, A., Yoon, V. (eds.) DESRIST 2014. LNCS, vol. 8463, pp. 1–16. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06701-8_1CrossRefGoogle Scholar
  3. 3.
    Simon, H.A.: The Sciences of the Artificial. MIT press, Cambridge (1996)Google Scholar
  4. 4.
    Silberman, M.S., et al.: Next steps for sustainable HCI. Interactions 21(5), 66–69 (2014).  https://doi.org/10.1145/2651820CrossRefGoogle Scholar
  5. 5.
    Trott, P., Hartmann, D.: Why ‘open innovation’ is old wine in new bottles. Int. J. Innov. Manag. 13(04), 715–736 (2009).  https://doi.org/10.1142/S1363919609002509CrossRefGoogle Scholar
  6. 6.
    Trott, P., Hartmann, D.: Open innovation: old ideas in a fancy tuxedo remedy a false dichotomy. In: Open Innovation Research, Management and Practice, pp. 359–386. Imperial College Press (2013).  https://doi.org/10.1142/9781783262816_0014. chap. 13
  7. 7.
    Rothwell, R., Zegveld, W.: Reindustrialization and technology. Longman, London (1985)Google Scholar
  8. 8.
    Japan Display Inc.: Message from the president (2014). http://www.j-display.com/english/company/index.html. Accessed 9 Sep 2014
  9. 9.
    Mustaquim, M.M., Nyström, T.: Designing sustainable IT system – from the perspective of universal design principles. In: Stephanidis, C., Antona, M. (eds.) UAHCI 2013. LNCS, vol. 8009, pp. 77–86. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39188-0_9CrossRefGoogle Scholar
  10. 10.
    Mustaquim, M.M., Nyström, T.: Design principles of open innovation concept – universal design viewpoint. In: Stephanidis, C., Antona, M. (eds.) UAHCI 2013. LNCS, vol. 8009, pp. 214–223. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39188-0_23CrossRefGoogle Scholar
  11. 11.
    Mustaquim, M.M., Nyström, T.: Open sustainability innovation—a pragmatic standpoint of sustainable HCI. In: Johansson, B., Andersson, B., Holmberg, N. (eds.) BIR 2014. LNBIP, vol. 194, pp. 101–112. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11370-8_8CrossRefGoogle Scholar
  12. 12.
    Bates, O., Thomas, V., Remy, C.: Doing good in HCI: can we broaden our agenda? Interactions 24(5), 80–82 (2017).  https://doi.org/10.1145/3121386CrossRefGoogle Scholar
  13. 13.
    Remy, C., Bates, O., Thomas, V., Huang, E.M.: The limits of evaluating sustainability. In: Proceedings of the 2017 Workshop on Computing Within Limits, LIMITS 2017, pp. 103–110. ACM, New York (2017).  https://doi.org/10.1145/3080556.3080567
  14. 14.
    The World Commission on Environment and Development (WCED): Our common future. Oxford University Press (1987)Google Scholar
  15. 15.
    DiSalvo, C., Sengers, P., Brynjarsdóttir, H.: Navigating the terrain of sustainable HCI. Interactions 17(4), 22–25 (2010).  https://doi.org/10.1145/1806491.1806497CrossRefGoogle Scholar
  16. 16.
    Dourish, P.: HCI and environmental sustainability: the politics of design and the design of politics. In: Proceedings of the 8th ACM Conference on Designing Interactive Systems, DIS 2010, pp. 1–10. ACM, New York (2010).  https://doi.org/10.1145/1858171.1858173
  17. 17.
    Stegall, N.: Designing for sustainability: a philosophy for ecologically intentional design. Des. Issues 22(2), 56–63 (2006).  https://doi.org/10.1162/desi.2006.22.2.56CrossRefGoogle Scholar
  18. 18.
    Knowles, B., Blair, L., Hazas, M., Walker, S.: Exploring sustainability research in computing: where we are and where we go next. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2013, pp. 305–314. ACM, New York (2013).  https://doi.org/10.1145/2493432.2493474
  19. 19.
    Elkington, J.: Towards the sustainable corporation: win-win-win business strategies for sustainable development. Calif. Manag. Rev. 36(2), 90–100 (1994).  https://doi.org/10.2307/41165746CrossRefGoogle Scholar
  20. 20.
    Walker, S.: The Spirit of Design: Objects, Environment and Meaning. Earthscan, London (2011)Google Scholar
  21. 21.
    Nyström, T., Mustaquim, M.: Sustainable information system design and the role of sustainable HCI. In: Proceedings of the 18th International Academic MindTrek Conference: Media Business, Management, Content & Services, AcademicMindTrek 2014, pp. 66–73. ACM, New York (2014).  https://doi.org/10.1145/2676467.2676486
  22. 22.
    Hevner, A., Chatterjee, S.: Design science research in information systems. In: Design Research in Information Systems. Integrated Series in Information Systems, vol. 22, pp. 9–22. Springer, Boston (2010).  https://doi.org/10.1007/978-1-4419-5653-8_2
  23. 23.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)CrossRefGoogle Scholar
  24. 24.
    March, S.T., Smith, G.F.: Design and natural science research on information technology. Decis. Support Syst. 15(4), 251–266 (1995).  https://doi.org/10.1016/0167-9236(94)00041-2CrossRefGoogle Scholar
  25. 25.
    Kruchten, P.: Casting software design in the function-behavior-structure framework. IEEE Softw. 22(2), 52–58 (2005).  https://doi.org/10.1109/MS.2005.33CrossRefGoogle Scholar
  26. 26.
    Ralph, P.: Comparing two software design process theories. In: Winter, R., Zhao, J.L., Aier, S. (eds.) DESRIST 2010. LNCS, vol. 6105, pp. 139–153. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13335-0_10CrossRefGoogle Scholar
  27. 27.
    Gero, J.S.: Design prototypes: a knowledge representation schema for design. AI Mag. 11(4), 26–36 (1990).  https://doi.org/10.1609/aimag.v11i4.854CrossRefGoogle Scholar
  28. 28.
    Suchman, L.A.: Plans and Situated Actions: The Problem of Human-Machine Communication. Cambridge University Press, Cambridge (1987)Google Scholar
  29. 29.
    Ralph, P.: The sensemaking-coevolution-implementation theory of software design. Sci. Comput. Program. 101, 21–41 (2015).  https://doi.org/10.1016/j.scico.2014.11.007CrossRefGoogle Scholar
  30. 30.
    Shneiderman, B.: Universal usability. Commun. ACM 43(5), 84–91 (2000).  https://doi.org/10.1145/332833.332843CrossRefGoogle Scholar
  31. 31.
    Blevis, E.: Sustainable interaction design: invention & disposal, renewal & reuse. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2007, pp. 503–512. ACM, New York (2007).  https://doi.org/10.1145/1240624.1240705
  32. 32.
    Hartson, H.R.: Human-computer interaction: interdisciplinary roots and trends. J. Syst. Softw. 43(2), 103–118 (1998).  https://doi.org/10.1016/S0164-1212(98)10026-2CrossRefGoogle Scholar
  33. 33.
    Ralph, P.: Software engineering process theory: a multi-method comparison of sensemaking-coevolution-implementation theory and function-behavior-structure theory. Inf. Softw. Technol. 70, 232–250 (2016).  https://doi.org/10.1016/j.infsof.2015.06.010CrossRefGoogle Scholar
  34. 34.
    Curtis, B., Kellner, M.I., Over, J.: Process modeling. Commun. ACM 35(9), 75–90 (1992).  https://doi.org/10.1145/130994.130998CrossRefGoogle Scholar
  35. 35.
    Fuchs, C., Obrist, M.: HCI and society: towards a typology of universal design principles. Int. J. Hum. Comput. Interact. 26, 638–656 (2010).  https://doi.org/10.1080/10447311003781334CrossRefGoogle Scholar
  36. 36.
    Friedman, B., Kahn, P.H., Borning, A., Huldtgren, A.: Value sensitive design and information systems. In: Doorn, N., Schuurbiers, D., van de Poel, I., Gorman, M.E. (eds.) Early Engagement and New Technologies: Opening Up the Laboratory. PET, vol. 16, pp. 55–95. Springer, Dordrecht (2013).  https://doi.org/10.1007/978-94-007-7844-3_4CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.Uppsala UniversityUppsalaSweden

Personalised recommendations