Targeted Therapeutic Nanoparticles for Cancer and Other Human Diseases

  • Rabiatul Basria S. M. N. MydinEmail author
  • Wan Nordiana Rahman
  • Rosmazihana Mat Lazim
  • Amirah Mohd Gazzali
  • Nur Hazirah Mohd Azlan
  • Said Moshawih


Targeted drug delivery is a useful approach to enhanced the present therapeutic efficacy in treating human diseases especially cancers. Nanoparticles is known for its ability to act as passive targeting agent through the enhanced permeability and retention effects and it has also shown promising results for drug or gene delivery, radiotherapy and photodynamic therapy applications. This chapter will describe the different organic and inorganic therapeutic nanoparticles that may be used with specific applications. These materials will be explained in brief alongside the reported research works and its related applications.


Targeted therapeutic nanoparticles Solid lipid nanoparticle Tumor-specific targeting nanoparticles Nanoparticles for gene delivery Therapeutic nanosystems Superparamagnetic iron oxide nanoparticles Nanoparticles for photodynamic therapy 



The authors are thankful to the Ministry of Education (MOE) Malaysia for funding this work under Transdisciplinary Research Grant Scheme (TRGS) grant no. 6769003. The authors are very much grateful to Universiti Sains Malaysia (USM) for providing the necessary facilities to carry out the research work and financial support under USM-Short Term Research Grant (304/CIPPT/6315073).


  1. Abrahamse H, Hamblin MR (2016) New photosensitizers for photodynamic therapy. Biochem J 473(4):347–364PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bachor R, Shea CR, Belmonte SJ, Hasan T (1991) Free and conjugated chlorin E6 in the photodynamic therapy of human bladder carcinoma cells. J Urol 146(6):1654–1658PubMedCrossRefGoogle Scholar
  3. Ban C, Jo M, Lim S, Choi YJ (2018) Control of the gastrointestinal digestion of solid lipid nanoparticles using PEGylated emulsifiers. Food Chem 239:442–452PubMedCrossRefPubMedCentralGoogle Scholar
  4. Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S (2016) Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release 238:176–185PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bharathiraja S, Moorthy MS, Manivasagan P, Seo H, Lee KD, Oh J (2017) Chlorin e6 conjugated silica nanoparticles for targeted and effective photodynamic therapy. Photodiagn Photodyn Ther 19:212–220CrossRefGoogle Scholar
  6. Bovis MJ, Woodhams JH, Loizidou M, Scheglmann D, Bown SG, MacRobert AJ (2012) Improved in vivo delivery of m-THPC via pegylated liposomes for use in photodynamic therapy. J Control Release 157(2):196–205PubMedCrossRefGoogle Scholar
  7. Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56(11):1649–1659PubMedCrossRefGoogle Scholar
  8. Brede C, Labhasetwar V (2013) Applications of nanoparticles in the detection and treatment of kidney diseases. Adv Chronic Kidney Dis 20(6):454–465PubMedCrossRefGoogle Scholar
  9. Cacciatore I, Ciulla M, Fornasari E, Marinelli L, Di Stefano A (2016) Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv 13(8):1121–1131PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cassim SM, Giustini AJ, Petryk AA, Strawbridge RA, Hoopes PJ (2009) Iron oxide hyperthermia and radiation cancer treatment. Proc SPIE Int Soc Opt Eng 181:71810OGoogle Scholar
  11. Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, Fenart L (2007) Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov 6(8):650–661PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J et al (2013) Structural basis for molecular recognition of folic acid by folate receptors. Nature 500(7463):486–489PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cho K, Wang XU, Nie S, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316PubMedCrossRefGoogle Scholar
  14. Colombeau L, Acherar S, Baros F, Arnoux P, Gazzali AM, Zaghdoudi K et al (2016) Inorganic nanoparticles for photodynamic therapy. In: Sortino S (ed) Light-responsive nanostructured systems for applications in nanomedicine. Springer International Publishing, Cham, pp 113–134CrossRefGoogle Scholar
  15. Davis ME, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782PubMedCrossRefGoogle Scholar
  16. Dikmen G, Genç L, Güney G (2011) Advantage and disadvantage in drug delivery systems. J Mater Sci Eng 5(4):468Google Scholar
  17. Esposito E, Mariani P, Ravani L, Contado C, Volta M, Bido S et al (2012) Nanoparticulate lipid dispersions for bromocriptine delivery: characterization and in vivo study. Eur J Pharm Biopharm 80(2):306–314PubMedCrossRefGoogle Scholar
  18. Fu Y, Liu H, Ren Z, Li X, Huang J, Best S, Han G (2017) Luminescent CaTiO 3: Yb, Er nanofibers co-conjugated with Rose Bengal and gold nanorods for potential synergistic photodynamic/photothermal therapy. J Mater Chem B 5(26):5128–5136CrossRefGoogle Scholar
  19. Fundarò A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR (2000) Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after iv administration to rats. Pharmacol Res 42(4):337–343PubMedCrossRefGoogle Scholar
  20. Gao S, Wang J, Tian R, Wang G, Zhang L, Li Y et al (2017) Construction and evaluation of a targeted hyaluronic acid nanoparticle/photosensitizer complex for cancer photodynamic therapy. ACS Appl Mater Interfaces 9(38):32509–32519PubMedCrossRefGoogle Scholar
  21. Gelperina S, Kisich K, Iseman MD, Heifets L (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172(12):1487–1490PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021PubMedCrossRefGoogle Scholar
  23. Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobioscience 3(1):66–73PubMedCrossRefGoogle Scholar
  24. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49(18):N309PubMedCrossRefGoogle Scholar
  25. Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, Cheresh DA (2002) Tumor regression by targeted gene delivery to the neovasculature. Science 296(5577):2404–2407PubMedCrossRefGoogle Scholar
  26. Hsu SH, Wen CJ, Al-Suwayeh SA, Chang HW, Yen TC, Fang JY (2010) Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: apomorphine as a model drug. Nanotechnology 21(40):405101PubMedCrossRefGoogle Scholar
  27. Huang G, Chen H, Dong Y, Luo X, Yu H, Moore Z et al (2013) Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 3(2):116PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kaur IP, Bhandari R, Bhandari S, Kakkar V (2008) Potential of solid lipid nanoparticles in brain targeting. J Control Release 127(2):97–109PubMedCrossRefPubMedCentralGoogle Scholar
  29. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem In PressGoogle Scholar
  30. Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44(10):853–862PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kim HR, Gil S, Andrieux K, Nicolas V, Appel M, Chacun H et al (2007) Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell Mol Life Sci 64(3):356–364PubMedCrossRefGoogle Scholar
  32. Kim JK, Seo SJ, Kim KH, Kim TJ, Chung MH, Kim KR, Yang TK (2010) Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect. Nanotechnology 21(42):425102PubMedCrossRefGoogle Scholar
  33. Klein S, Sommer A, Distel LV, Hazemann JL, Kröner W, Neuhuber W et al (2014) Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy. J Phys Chem B 118(23):6159–6166PubMedCrossRefGoogle Scholar
  34. Kuo YC, Cheng SJ (2016) Brain targeted delivery of carmustine using solid lipid nanoparticles modified with tamoxifen and lactoferrin for antitumor proliferation. Int J Pharm 499(1):10–19PubMedCrossRefGoogle Scholar
  35. Kuo YC, Hong TY (2014) Delivering etoposide to the brain using catanionic solid lipid nanoparticles with surface 5-HT-moduline. Int J Pharm 465(1):132–142PubMedCrossRefGoogle Scholar
  36. Kuo YC, Lee CH (2015) Inhibition against growth of glioblastoma multiforme in vitro using etoposide-loaded solid lipid nanoparticles with p-Aminophenyl-α-d-Manno-Pyranoside and folic acid. J Pharm Sci 104(5):1804–1814PubMedCrossRefGoogle Scholar
  37. Kuo YC, Liang CT (2011) Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor. Biomaterials 32(12):3340–3350PubMedCrossRefGoogle Scholar
  38. Kuo YC, Shih-Huang CY (2014) Solid lipid nanoparticles with surface antibody for targeting the brain and inhibiting lymphatic phagocytosis. J Taiwan Inst Chem Eng 45(4):1154–1163CrossRefGoogle Scholar
  39. Kuo YC, Wang IH (2017) Using catanionic solid lipid nanoparticles with wheat germ agglutinin and lactoferrin for targeted delivery of etoposide to glioblastoma multiforme. J Taiwan Inst Chem Eng 77:73–82CrossRefGoogle Scholar
  40. Kwatra D, Venugopal A, Anant S (2013) Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res 2(4):330–342Google Scholar
  41. Lamprecht A (ed) (2016) Nanotherapeutics: drug delivery concepts in nanoscience. CRC Press, Boca Raton, FLGoogle Scholar
  42. Lévy R, Shaheen U, Cesbron Y, See V (2010) Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev 1(1):4889CrossRefGoogle Scholar
  43. Li L, Mak KY, Shi J, Koon HK, Leung CH, Wong CM et al (2012) Comparative in vitro cytotoxicity study on uncoated magnetic nanoparticles: effects on cell viability, cell morphology, and cellular uptake. J Nanosci Nanotechnol 12(12):9010–9017PubMedCrossRefGoogle Scholar
  44. Lin X, Yan SZ, Qi SS, Xu Q, Han SS, Guo LY et al (2017) Transferrin-modified nanoparticles for photodynamic therapy enhance the antitumor efficacy of Hypocrellin A. Front Pharmacol 8:815PubMedPubMedCentralCrossRefGoogle Scholar
  45. Liu KS, Wen CJ, Yen TC, Sung KC, Ku MC, Wang JJ, Fang JY (2012) Combined strategies of apomorphine diester prodrugs and nanostructured lipid carriers for efficient brain targeting. Nanotechnology 23(9):095103PubMedCrossRefGoogle Scholar
  46. Liu J, Meng T, Yuan M, Wen L, Cheng B, Liu N et al (2016) MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int J Nanomedicine 11:6713PubMedPubMedCentralCrossRefGoogle Scholar
  47. Mäder K, Mehnert W (2004) 1—solid lipid nanoparticles—concepts, procedures, and physicochemical aspects. In: Nastruzzi C (ed) Lipospheres in drug targets and delivery: approaches, methods, and applications. CRC Press, Boca Raton, FL, pp 1–22Google Scholar
  48. Mahmoudi M, Simchi A, Imani M, Milani AS, Stroeve P (2008) Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Phys Chem B 112(46):14470–14481PubMedCrossRefGoogle Scholar
  49. Mahmoudi M, Simchi A, Milani AS, Stroeve P (2009) Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 336(2):510–518PubMedCrossRefGoogle Scholar
  50. Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Häfeli UO, Stroeve P (2010) A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf B: Biointerfaces 75(1):300–309PubMedCrossRefGoogle Scholar
  51. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B et al (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103(2):317–324CrossRefGoogle Scholar
  52. Malekigorji M, Curtis ADM, Hoskins C (2014) The use of iron oxide nanoparticles for pancreatic cancer therapy. J Nanomed Res 1:1Google Scholar
  53. Martinez AI, Garcia-Lobato MA, Perry DL (2009) Study of the properties of iron oxide nanostructures. Res Nanotechnol Devel 19:184–193Google Scholar
  54. Martín-Rapun R, De Matteis L, Ambrosone A, Garcia-Embid S, Gutierrez L, De La Fuente M, J. (2017) Targeted nanoparticles for the treatment of Alzheimer’s disease. Curr Pharm Des 23:1927–1952PubMedCrossRefGoogle Scholar
  55. Matsudaira H, Ueno AM, Furuno I (1980) Iodine contrast medium sensitizes cultured mammalian cells to X rays but not to γ rays. Radiat Res 84(1):144–148PubMedCrossRefGoogle Scholar
  56. Mello RS, Callisen H, Winter J, Kagan AR, Norman A (1983) Radiation dose enhancement in tumors with iodine. Med Phys 10(1):75–78CrossRefGoogle Scholar
  57. Mishra BBTS, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6(1):9–24PubMedCrossRefGoogle Scholar
  58. Mudshinge SR, Deore AB, Patil S, Bhalgat CM (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 19:129–141PubMedPubMedCentralCrossRefGoogle Scholar
  59. Pardeshi CV, Rajput PV, Belgamwar VS, Tekade AR, Surana SJ (2013) Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. Drug Deliv 20(1):47–56PubMedCrossRefPubMedCentralGoogle Scholar
  60. Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C et al (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine 5(2):136–142PubMedCrossRefGoogle Scholar
  61. Reddy LH, Sharma RK, Chuttani K, Mishra AK, Murthy RSR (2005) Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice. J Control Release 105(3):185–198CrossRefGoogle Scholar
  62. Rosen JE, Chan L, Shieh DB, Gu FX (2012) Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomedicine 8(3):275–290PubMedCrossRefGoogle Scholar
  63. Rosenkranz AA, Jans DA, Sobolev AS (2000) Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency. Immunol Cell Biol 78(4):452–464PubMedCrossRefGoogle Scholar
  64. Rui LL, Cao HL, Xue YD, Liu LC, Xu L, Gao Y, Zhang WA (2016) Functional organic nanoparticles for photodynamic therapy. Chin Chem Lett 27(8):1412–1420CrossRefGoogle Scholar
  65. Seo SJ, Jeon JK, Jeong EJ, Chang WS, Choi GH, Kim JK (2013) Enhancement of tumor regression by coulomb nanoradiator effect in proton treatment of iron-oxide nanoparticle-loaded orthotopic rat glioma model: implication of novel particle induced radiation therapy. J Cancer Ther 4(11):25CrossRefGoogle Scholar
  66. Shah B, Khunt D, Bhatt H, Misra M, Padh H (2015) Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: effect on formulation and characterization parameters. Eur J Pharm Sci 78:54–66PubMedCrossRefGoogle Scholar
  67. Shin TH, Choi Y, Kim S, Cheon J (2015) Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev 44(14):4501–4516PubMedCrossRefGoogle Scholar
  68. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223PubMedPubMedCentralCrossRefGoogle Scholar
  69. Soenen SJ, De Cuyper M, De Smedt SC, Braeckmans K (2012) Investigating the toxic effects of iron oxide nanoparticles. Methods Enzymol 509:195–224PubMedCrossRefGoogle Scholar
  70. Song Y, Shi Q, Zhu C, Luo Y, Lu Q, Li H et al (2017) Mitochondrial-targeted multifunctional mesoporous Au@ Pt nanoparticles for dual-mode photodynamic and photothermal therapy of cancers. Nanoscale 9(41):15813–15824PubMedCrossRefGoogle Scholar
  71. Spiers FW (1949) The influence of energy absorption and electron range on dosage in irradiated bone. Br J Radiol 22(261):521–533PubMedCrossRefGoogle Scholar
  72. Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48:416–427PubMedCrossRefGoogle Scholar
  73. Su XY, Liu PD, Wu H, Gu N (2014) Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biol Med 11(2):86PubMedPubMedCentralGoogle Scholar
  74. Sutradhar KB, Amin ML (2014) Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol 2014:1–12CrossRefGoogle Scholar
  75. Toossi MTB, Ghorbani M, Sabet LS, Akbari F, Mehrpouyan M (2015) A Monte Carlo study on dose enhancement and photon contamination production by various nanoparticles in electron mode of a medical linac. Nukleonika 60(3):489–496CrossRefGoogle Scholar
  76. Tsai MJ, Huang YB, Wu PC, Fu YS, Kao YR, Fang JY, Tsai YH (2011) Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations. J Pharm Sci 100(2):547–557PubMedCrossRefPubMedCentralGoogle Scholar
  77. Urbanski M, Mirzaei J, Sharma A, Hofmann D, Kitzerow H-S, Hegmann T (2016) Chemically and thermally stable, emissive carbon dots as viable alternatives to semiconductor quantum dots for emissive nematic liquid crystal–nanoparticle mixtures with lower threshold voltage. Liq Cryst 43:183–194CrossRefGoogle Scholar
  78. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304PubMedCrossRefGoogle Scholar
  79. Wen CJ, Zhang LW, Al-Suwayeh SA, Yen TC, Fang JY (2012) Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int J Nanomedicine 7:1599PubMedPubMedCentralGoogle Scholar
  80. Wennink JW, Liu Y, Mäkinen PI, Setaro F, de la Escosura A, Bourajjaj M et al (2017) Macrophage selective photodynamic therapy by meta-tetra (hydroxyphenyl) chlorin loaded polymeric micelles: a possible treatment for cardiovascular diseases. Eur J Pharm Sci 107:112–125PubMedCrossRefGoogle Scholar
  81. Westman JA (2006) Medical genetics for the modern clinician. Lippincott Williams & Wilkins, Philadelphia, PAGoogle Scholar
  82. Wong HL, Bendayan R, Rauth AM, Wu XY (2004) Development of solid lipid nanoparticles containing ionically complexed chemotherapeutic drugs and chemosensitizers. J Pharm Sci 93(8):1993–2008PubMedCrossRefGoogle Scholar
  83. Wong HL, Bendayan R, Rauth AM, Wu XY (2006a) Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J Control Release 116(3):275–284PubMedCrossRefGoogle Scholar
  84. Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z et al (2006b) A new polymer–lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res 23(7):1574–1585PubMedCrossRefGoogle Scholar
  85. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397PubMedPubMedCentralCrossRefGoogle Scholar
  86. Wu J, Han H, Jin Q, Li Z, Li H, Ji J (2017) Design and proof of programmed 5-aminolevulinic acid prodrug nanocarriers for targeted photodynamic cancer therapy. ACS Appl Mater Interfaces 9(17):14596–14605PubMedCrossRefGoogle Scholar
  87. Xie L, Jiang R, Zhu F, Liu H, Ouyang G (2014) Application of functionalized magnetic nanoparticles in sample preparation. Anal Bioanal Chem 406(2):377–399PubMedCrossRefGoogle Scholar
  88. Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ (1999) Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release 59(3):299–307PubMedCrossRefGoogle Scholar
  89. Youssef Z, Vanderesse R, Colombeau L, Baros F, Roques-Carmes T, Frochot C et al (2017) The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy. Cancer Nanotechnol 8(1):6PubMedPubMedCentralCrossRefGoogle Scholar
  90. Yusuf M, Khan M, Khan RA, Ahmed B (2013) Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J Drug Target 21(3):300–311CrossRefGoogle Scholar
  91. Zara GP, Cavalli R, Bargoni A, Fundarò A, Vighetto D, Gasco MR (2002) Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J Drug Target 10(4):327–335PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rabiatul Basria S. M. N. Mydin
    • 1
    Email author
  • Wan Nordiana Rahman
    • 2
  • Rosmazihana Mat Lazim
    • 2
  • Amirah Mohd Gazzali
    • 3
  • Nur Hazirah Mohd Azlan
    • 1
  • Said Moshawih
    • 4
  1. 1.Oncological and Radiological Sciences Cluster, Advanced Medical and Dental InstituteUniversiti Sains MalaysiaKepala BatasMalaysia
  2. 2.Medical Radiation Programme, School of Health SciencesUniversiti Sains Malaysia (Health Campus)Kubang KerianMalaysia
  3. 3.School of Pharmaceutical SciencesUniversiti Sains MalaysiaMindenMalaysia
  4. 4.Jordan Center for Pharmaceutical ResearchAmmanJordan

Personalised recommendations