Advertisement

Nanotechnology in Renewable Energy: Critical Reviews for Wind Energy

  • W. K. Muzammil
  • Md. Mizanur RahmanEmail author
  • A. Fazlizan
  • M. A. Ismail
  • H. K. Phang
  • M. A. Elias
Chapter

Abstract

Wind energy is recognised as a potential source for free, clean and inexhaustible energy. Therefore, the diffusion of wind energy technology in the power sector has been growing steadily in the past few decades due to the rising concern in global energy issues. Wind power machines, or commonly known as wind turbines, are still further developing over the years to increase its performance in term of efficiency, cost-effectiveness and reliability in wind energy and wind power application. However, there are challenges in the recent developments and technology trends particularly on introducing Nano technology on wind turbine blade design, offshore deployment and operation. This chapter provides fundamental knowledge of wind turbines operation and the implementation of Nano technology on the design aspects of turbine blades with some factors that could affect the performance of wind turbines. Furthermore, the environmental issues that are affecting the performance of wind turbines are also discussed. The details of this chapter cover the challenges of wind turbine design, followed by the principle of wind turbine design and the environmental issues that affect the aerodynamic efficiency of wind turbines.

References

  1. An Q, Rider AN, Thostenson ET (2012) Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composite with improved mechanical properties. Carbon 11(50):4130–4133CrossRefGoogle Scholar
  2. Ancona D, McVeigh J (2001) Wind turbine-materials and manufacturing fact sheet. US Department of Energy: Princeton Energy Resources International for the Office of Industrial TechnologiesGoogle Scholar
  3. Arianpour F, Farzaneh M, Kulinich SA (2013) Hydrophobic and ice-retarding properties of doped silicone rubber coatings. Appl Surf Sci 265:546–552CrossRefGoogle Scholar
  4. Barakati, SM (2007) Wind turbine system: history, structure and dynamic model. Handbook of renewable energy technology, edited by Ahmed F Zobaa and Ramesh C. Bansa, 21–51. Singapore: World Scientific Publishing.  https://doi.org/10.1142/9789814289078_0002CrossRefGoogle Scholar
  5. Bethune DS et al (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607CrossRefGoogle Scholar
  6. Brown KA, Brooks R (2010) Design and analysis of vertical axis thermoplastic composite wind turbine blade. Plastics Rubber Compos 39(3–5):111–121CrossRefGoogle Scholar
  7. Campbell S (2015) Annual blade failures estimated at around 3,800. https://www.windpowermonthly.com/article/1347145/annual-blade-failures-estimated-around-3800
  8. Castorrini A et al (2016) Computational analysis of wind-turbine blade rain erosion. Comput Fluids 141:175–183CrossRefGoogle Scholar
  9. Chen J et al (2013) Structural optimization study of composite wind turbine blade. Mater Des 46:247–255CrossRefGoogle Scholar
  10. Chong WT et al (2017) Cross axis wind turbine: pushing the limit of wind turbine technology with complementary design. Appl Energy 207:78–95CrossRefGoogle Scholar
  11. Chou JS et al (2013) Failure analysis of wind turbine blade under critical wind loads. Eng Fail Anal 27:99–118CrossRefGoogle Scholar
  12. Cox K, Echtermeyer A (2012) Structural design and analysis of a 10MW wind turbine blade. Energy Procedia 24:194–201CrossRefGoogle Scholar
  13. Dal Monte A et al (2017) Proposal for a coupled aerodynamic–structural wind turbine blade optimization. Compos Struct 159:144–156CrossRefGoogle Scholar
  14. Dalili N, Edrisy A, Carriveau R (2009) A review of surface engineering issues critical to wind turbine performance. Renew Sustain Energy Rev 13:428–438CrossRefGoogle Scholar
  15. Davis DC et al (2011) A strategy for improving mechanical properties of a fiber reinforced epoxy composite using functionalized carbon nanotubes. Compos Sci Technol 8(71):1089–1097CrossRefGoogle Scholar
  16. Edelstein WA et al (2003) Wind energy. A report prepared for the Panel on Public Affairs (POPA). American Physical SocietyGoogle Scholar
  17. Elliot DL et al (1986) Wind energy resource atlas of the United States. Department of Energy, Pacific Northwest Laboratory, Richland, WAGoogle Scholar
  18. Fagan EM et al (2017) Physical experimental static testing and structural design optimisation for a composite wind turbine blade. Compos Struct 164:90–103CrossRefGoogle Scholar
  19. Fakorede O et al (2016) Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis. Renew Sust Energ Rev 65:662–675CrossRefGoogle Scholar
  20. Gao Y, Pan L (2012) Fatigue of nanotube-reinforced carbon fiber epoxy composites. Adv Mater Res 510:753–756CrossRefGoogle Scholar
  21. Geng Y et al (2008) Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos A: Appl Sci Manuf 39(12):1876–1883CrossRefGoogle Scholar
  22. Golfman Y (2012) Hybrid anisotropic materials for wind power turbine blades. CRC Press, Boca RatonCrossRefGoogle Scholar
  23. Griffith DT, Resor BR, Ashwill TD (2012) Challenges and opportunities in large offshore rotor development: Sandia 100-meter blade research. In: AWEA WINDPOWER Conference and ExhibitionGoogle Scholar
  24. Hamdan A et al (2014) A review on the micro energy harvester in Structural Health Monitoring (SHM) of biocomposite material for Vertical Axis Wind Turbine (VAWT) system: a Malaysia perspective. Renew Sust Energ Rev 35:23–30CrossRefGoogle Scholar
  25. Hameed MS, Afaq SK, Shahid F (2015) Finite element analysis of a composite VAWT blade. Ocean Eng 109:669–676CrossRefGoogle Scholar
  26. Iijima S (1991) Helical microtubes of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  27. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRefGoogle Scholar
  28. Karmouch R, Ross GG (2010) Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy. Appl Surf Sci 257:665–669CrossRefGoogle Scholar
  29. Khan SU, Kim JK (2011) Impact and delamination failure of multiscale carbon nanotube-fiber reinforced polymer composites: a review. Int J Aeronaut Space Sci 12(2):115–133CrossRefGoogle Scholar
  30. Khan RA et al (2013) Mechanical and barrier properties of carbon nanotube reinforced PCL-based composite films: effect of gamma radiation. J Appl Polym Sci 127(5):3962–3969CrossRefGoogle Scholar
  31. Kim KC et al (2014) Experimental and numerical study of the aerodynamic characteristics of an archimedes spiral wind turbine blade. Energies 7(12):7893–7914CrossRefGoogle Scholar
  32. Kong CD, Lee HS, Kim MW (2011) Aerodynamic and structural design of a high efficiency small scale composite vertical axis wind turbine blade. In: International Conference on Composite Materials. Jeju, KoreaGoogle Scholar
  33. Liang F et al (2011) Multifunctional nanocomposite coating for wind turbine blades. Int J Smart Nano Mater 2(3):120–133CrossRefGoogle Scholar
  34. Ma PC, Kim JK (2011) Carbon nanotubes for polymer reinforcement. CRC Press, Boca RatonGoogle Scholar
  35. Ma PC, Zhang Y (2014) Perspectives of carbon nanotubes/polymer nanocomposites for wind blade materials. Renew Sust Energ Rev 30:651–660CrossRefGoogle Scholar
  36. Martinez E et al (2009) Life cycle assessment of a multi-megawatt wind turbine. Renew Energy 34(3):667–673CrossRefGoogle Scholar
  37. Mishnaevsky L Jr (2012) Composite materials for wind energy applications: micro-mechanical modeling and future directions. Comput Mech 50(2):195–207CrossRefGoogle Scholar
  38. Mishnaevsky L et al (2017) Materials for wind turbine blades: an overview. Materials 10(11):1285CrossRefPubMedCentralGoogle Scholar
  39. Monroy Aceves C et al (2012) Design methodology for composite structures: a small low air-speed wind turbine blade case study. Mater Des 36:296–305CrossRefGoogle Scholar
  40. Ng KW, Lam WH, Pichiah S (2013) A review on potential applications of carbon nanotubes in marine current turbines. Renew Sust Energ Rev 28:331–339CrossRefGoogle Scholar
  41. Nijssen RPL, Brøndsted P (2013) Chapter 6: Fatigue as a design driver for composite wind turbine blades. In: Nijssen RPL and Brøndsted P (eds) Advances in Wind Turbine Blade Design and Materials. Cambridge: Woodhead Publishing, pp. 175–209CrossRefGoogle Scholar
  42. Nijssen R, de Winkel GD (2016) Chapter 5: Developments in materials for offshore wind turbine blades. In: Ng C and Ran L (eds) Offshore Wind Farms: Technologies, Design and Operation. Elsevier Science & Technology, pp. 85–104Google Scholar
  43. Pourrajabian A et al (2016) Aero-structural design and optimization of a small wind turbine blade. Renew Energy 87:837–848CrossRefGoogle Scholar
  44. Qian H et al (2010) Carbon nanotube-based hierarchical composites: a review. J Mater Chem 20:4751–4762CrossRefGoogle Scholar
  45. Schubel PJ, Crossley RJ (2012) Wind turbine blade design. Energies 5(9):3425–3449CrossRefGoogle Scholar
  46. Song Q (2012) Design, fabrication, and testing of a new small wind turbine blade. University of Guelph, Guelph, ONGoogle Scholar
  47. Tan CS, Maragatham K, Leong YP (2013) Electricity energy outlook in Malaysia. IOP Conf Ser Earth Environ Sci 16:012126CrossRefGoogle Scholar
  48. Thostenson ET, Ren ZF, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912CrossRefGoogle Scholar
  49. Xu B, Lu F, Song G (2018) Experimental study on anti-icing and deicing model wind turbine blades with continuous carbon fiber sheets. J Cold Reg Eng 31(1):04017024CrossRefGoogle Scholar
  50. Yang ZJ et al (2014) Design and verification of a small-scale lift-type vertical axis wind turbine composite blade. International Conference on Materials for Renewable Energy and Environment (ICMREE). Chengdu, ChinaGoogle Scholar
  51. Zeng J, Song B (2017) Research on experiment and numerical simulation of ultrasonic de-icing for wind turbine blades. Renew Energy 113:706–712CrossRefGoogle Scholar
  52. Zhou Y et al (2005) Experimental study on thermal and mechanical behavior of polypropylene, talc/polypropylene and polypropylene/clay nanocomposites. Mater Sci Eng A 402(1–2):109–117CrossRefGoogle Scholar
  53. Zobaa AF, Bansal RC (2011) Handbook of renewable energy technology. World Scientific, SingaporeCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • W. K. Muzammil
    • 1
  • Md. Mizanur Rahman
    • 2
    Email author
  • A. Fazlizan
    • 3
  • M. A. Ismail
    • 1
  • H. K. Phang
    • 2
  • M. A. Elias
    • 3
  1. 1.Faculty of Engineering, Material and Mineral Research Unit (MMRU)Universiti MalaysiaKota KinabaluMalaysia
  2. 2.Faculty of Engineering, Energy Research Unit (ERU)Universiti MalaysiaKota KinabaluMalaysia
  3. 3.Solar Energy Research Institute (SERI)Universiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations