Advertisement

Zinc Based Spinel Oxides for Energy Conversion and Storage Applications

  • Faheem K. Butt
  • Sajid Ur Rehman
Chapter

Abstract

Recently, ZnV2O4 gained a great attention of the researchers in the field of energy storage applications. The main reason is that both zinc and vanadium are economical, earth abundant and have a variety of electrochemistry to offer. The different oxidation states of vanadium deliver a vast range of redox reactions which are favorable for energy (electrochemical) storage applications. In this chapter facile and template free methods are presented for the synthesis of novel hierarchical nanospheres (NHNs), glomerulus nano/microspheres and spinel oxide nanosheets of ZnV2O4 to be used in different energy storage applications including Lithium ion batteries (LIBs), hydrogen storage and supercapacitors. Also, ZnV2O4 is studied for the thermoelectric properties to be used in thermoelectric devices. These studies overlay the way to consider ZnV2O4 as a potential candidate for energy storage applications in future. This comprehensive review will boost the relevant research with a view to work on further performance enhancement of ZnV2O4 materials.

Notes

Acknowledgements

Financial support from Alexander von Humboldt Foundation and Federal Ministry for Education and Research (BMBF) is gratefully acknowledged.

References

  1. Bitla Y et al (2015) Origin of metallic behavior in NiCo2O4 ferrimagnet. Sci Rep 5:15201CrossRefGoogle Scholar
  2. Butt FK et al (2014a) Synthesis of novel ZnV2O4 hierarchical nanospheres and their applications as electrochemical supercapacitor and hydrogen storage material. ACS Appl Mater Interfaces 6(16):13635–13641CrossRefGoogle Scholar
  3. Butt FK et al (2014b) Synthesis of novel ZnV2O4 spinel oxide nanosheets and their hydrogen storage properties. CrystEngComm 16(5):894–899CrossRefGoogle Scholar
  4. Butt FK et al (2014c) Synthesis, evolution and hydrogen storage properties of ZnV2O4 glomerulus nano/microspheres: a prospective material for energy storage. Int J Hydrogen Energy 39(15):7842–7851CrossRefGoogle Scholar
  5. Chilev C, Lamari FD (2016) Hydrogen storage at low temperature and high pressure for application in automobile manufacturing. Int J Hydrog Energy 41(3):1744–1758CrossRefGoogle Scholar
  6. Duan F et al (2011) Template-free synthesis of ZnV2O4 hollow spheres and their application for organic dye removal. Appl Surf Sci 258(1):189–195CrossRefGoogle Scholar
  7. Elsheikh MH et al (2014) A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew Sust Energ Rev 30:337–355CrossRefGoogle Scholar
  8. Etacheri V et al (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262CrossRefGoogle Scholar
  9. Fotouhi A et al (2016) A review on electric vehicle battery modelling: from Lithium-ion toward Lithium–Sulphur. Renew Sust Energ Rev 56:1008–1021CrossRefGoogle Scholar
  10. Goldstein A et al (2013) Parasitic light absorption processes in transparent polycrystalline MgAl2O4 and YAG. J Am Ceram Soc 96(11):3523–3529CrossRefGoogle Scholar
  11. Hill RJ, Craig JR, Gibbs G (1979) Systematics of the spinel structure type. Phys Chem Miner 4(4):317–339CrossRefGoogle Scholar
  12. Jeppson P et al (2006) Cobalt ferrite nanoparticles: achieving the superparamagnetic limit by chemical reduction. J Appl Phys 100(11):114324CrossRefGoogle Scholar
  13. Lu L et al (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288CrossRefGoogle Scholar
  14. Marco JF et al (2001) Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4. J Mater Chem 11(12):3087–3093CrossRefGoogle Scholar
  15. Pei Y, Wang H, Snyder GJ (2012) Band engineering of thermoelectric materials. Adv Mater 24(46):6125–6135CrossRefGoogle Scholar
  16. Phanichphant S (2012) Cellulose-precursor synthesis of nanocrystalline Co 0.5 Cu 0.5 Fe 2 O 4 spinel ferrites. Mater Res Bull 47(2):473–477CrossRefGoogle Scholar
  17. Rechuis M et al (2003) Crystallographic and magnetic structure of ZnV2O4. Eur Phys J B 35:311–316CrossRefGoogle Scholar
  18. Shanmugavani A, Selvan RK (2016) Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors. Electrochim Acta 188:852–862CrossRefGoogle Scholar
  19. Sickafus KE, Wills JM, Grimes NW (1999) Structure of spinel. J Am Ceram Soc 82(12):3279–3292CrossRefGoogle Scholar
  20. Simon P, Brousse T, Favier F (2017) Electrochemical double-layer capacitors (EDLC). In: Simon P, Brousse T, Favier F (eds) Supercapacitors based on carbon or pseudocapacitive materials. ISTE Ltd; Wiley, London; Hoboken, NJ, pp 1–25CrossRefGoogle Scholar
  21. Singh S, Maurya R, Pandey SK (2016) Investigation of thermoelectric properties of ZnV2O4 compound at high temperatures. J Phys D Appl Phys 49(42):425601CrossRefGoogle Scholar
  22. Sonoyama N et al (2006) Electrochemical luminescence of rare earth metal ion doped MgIn2O4 electrodes. J Electrochem Soc 153(3):H45–H50CrossRefGoogle Scholar
  23. Stetson NT, McWhorter S, Ahn CC (2015) 1 - Introduction to hydrogen storage. In: Gupta Ram B, Basile A, Veziroğluin TN (eds) Compendium of hydrogen energy, vol 2. Woodhead Publishing, Cambridge, pp 3–25Google Scholar
  24. Sutherland FL et al (2009) Gem-corundum megacrysts from east Australian basalt fields: trace elements, oxygen isotopes and origins∗. Aust J Earth Sci 56(7):1003–1022CrossRefGoogle Scholar
  25. Vomir M et al (2016) Dynamical torque in CoxFe3–xO4 nanocube thin films characterized by femtosecond magneto-optics: a π-shift control of the magnetization precession. Nano Lett 16(8):5291–5297CrossRefGoogle Scholar
  26. Wei C et al (2016) Valence change ability and geometrical occupation of substitution cations determine the pseudocapacitance of spinel ferrite XFe2O4 (X= Mn, Co, Ni, Fe). Chem Mater 28(12):4129–4133CrossRefGoogle Scholar
  27. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302CrossRefGoogle Scholar
  28. Whittingham MS (2014) Ultimate limits to intercalation reactions for lithium batteries. Chem Rev 114(23):11414–11443CrossRefGoogle Scholar
  29. Xiao L et al (2009) Clewlike ZnV2O4 hollow spheres: nonaqueous sol–gel synthesis, formation mechanism, and lithium storage properties. Chem Eur J 15(37):9442–9450CrossRefGoogle Scholar
  30. Zeng L et al (2012) ZnV2O4–CMK nanocomposite as an anode material for rechargeable lithium-ion batteries. J Mater Chem 22(28):14284–14288CrossRefGoogle Scholar
  31. Zhang C et al (2016) Hierarchically porous Co3O4/C nanowire arrays derived from a metal–organic framework for high performance supercapacitors and the oxygen evolution reaction. J Mater Chem A 4(42):16516–16523CrossRefGoogle Scholar
  32. Zhang L et al (2018) A review of supercapacitor modeling, estimation, and applications: a control/management perspective. Renew Sust Energ Rev 81:1868–1878CrossRefGoogle Scholar
  33. Zhang X, Zhao L-D (2015) Thermoelectric materials: energy conversion between heat and electricity. J Mater 1(2):92–105Google Scholar
  34. Zhao Q et al (2017) Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem Rev 117(15):10121–10211CrossRefGoogle Scholar
  35. Zheng C et al (2014) Synthesis of hierarchical ZnV2O4 microspheres and its electrochemical properties. CrystEngComm 16(44):10309–10313CrossRefGoogle Scholar
  36. Zhu X et al (2015) Nanophase ZnV2O4 as stable and high capacity Li insertion electrode for Li-ion battery. Curr Appl Phys 15(4):435–440CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Faheem K. Butt
    • 1
    • 2
  • Sajid Ur Rehman
    • 3
  1. 1.Division of Science and Technology, Department of PhysicsUniversity of EducationLahorePakistan
  2. 2.Physik-Department, ECSTechnische Universität MünchenGarchingGermany
  3. 3.State Key Laboratory on Integrated Optoelectronics, Institute of SemiconductorsChinese Academy of SciencesBeijingChina

Personalised recommendations