Nano TiO2 for Biomedical Applications

  • Khairul Arifah Saharudin
  • Srimala SreekantanEmail author
  • Rabiatul Basria S. M. N. Mydin
  • Siti Nor Qurratu Aini Abd Aziz
  • G. Ambarasan Govindasamy


Titanium dioxide (TiO2) has been prepared and widely used for many years. Owing to its unique photocatalytic properties, excellent strength and biocompatibility, high chemical stability, and low toxicity, TiO2 has been extensively used in biomedical applications. Advances in nanoscale science suggest that some of the current problems of life science could be resolved or greatly improved via utilization of TiO2. This chapter illustrated a critical review of current achievement of nano TiO2 in the biomedical field. This includes special insight into the role of nanostructured TiO2 as an implants material, drug delivery systems and antimicrobial agent in device related infections (DRI). The synthesis-characterization-properties-performance relationships of TiO2 in the respected application is emphasized in this chapter. The latest challenges and new directions for future research in this emerging frontier are also elaborated.



The authors are thankful to the Ministry of Education (MOE) Malaysia for funding this work under Transdisciplinary Research Grant Scheme (TRGS) grant no. 6769002. The authors are very much grateful to Universiti Sains Malaysia (USM) for providing the necessary facilities to carry out the research work and financial support under Research University (RU) grant no. 814281.


  1. Abdelmoula M, Sokoloff J, Lu W-T, Close T, Menon L, Richter C (2014) Optical properties of titanium dioxide nanotube arrays. J Appl Phys 115(1):014306Google Scholar
  2. Amin SA, Pazouki M, Hosseinnia A (2009) Synthesis of TiO2-Ag nanocomposite with sol–gel method and investigation of its antibacterial activity against E. coli. Powder Technol 196(3):241–245Google Scholar
  3. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomedicine 7:6003PubMedPubMedCentralGoogle Scholar
  4. Banerjee AN (2011) The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnol Sci Appl 4:35–65PubMedPubMedCentralGoogle Scholar
  5. Baslé MF, Chappard D, Grizon F, Filmon R, Delecrin J, Daculsi G, Rebel A (1993) Osteoclastic resorption of Ca-P biomaterials implanted in rabbit bone. Calcif Tissue Int 53(5):348–356PubMedGoogle Scholar
  6. Berry CC, Curtis AS (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R198Google Scholar
  7. Carp O (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177Google Scholar
  8. Chatterjee K, Sarkar S, Rao KJ, Paria S (2014) Core/shell nanoparticles in biomedical applications. Adv Colloid Interface Sci 209:8–39PubMedGoogle Scholar
  9. Delgado K, Quijada R, Palma R, Palza H (2011) Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett Appl Microbiol 53(1):50–54PubMedGoogle Scholar
  10. Díaz-Visurraga J, Gutiérrez C, Von Plessing C, García A (2011) Metal nanostructures as antibacterial agents. In: Méndez-Vilas A (ed) Science and technology against microbial pathogens: research, development and evaluation. Formatex, Badajoz, pp 210–218Google Scholar
  11. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5):53–229Google Scholar
  12. Du Y, Ren W, Li Y, Zhang Q, Zeng L, Chi C, Wu A, Tian J (2015) The enhanced chemotherapeutic effects of doxorubicin loaded PEG coated TiO2 nanocarriers in an orthotopic breast tumor bearing mouse model. J Mater Chem B 3(8):1518–1528Google Scholar
  13. Durairaj B, Xavier T, Muthu S (2014) Fungal generated titanium dioxide nanoparticles for UV protective and bacterial resistant fabrication. Int J Eng Sci Technol 6(9):621Google Scholar
  14. El-Ghannam A (2005) Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices 2(1):87–101PubMedGoogle Scholar
  15. Emamifar A (2011) Applications of antimicrobial polymer nanocomposites in food packaging. In: Advances in nanocomposite technology. InTech. doi: Scholar
  16. Fini M, Cigada A, Rondelli G, Chiesa R, Giardino R, Giavaresi G, Aldini NN, Torricelli P, Vicentini B (1999) In vitro and in vivo behaviour of Ca-and P-enriched anodized titanium. Biomaterials 20(17):1587–1594PubMedGoogle Scholar
  17. Fitzpatrick P, Rowley A, Wright N, Bedel L (2012) Nanocatalysis for detoxification technologies. J Nanosci Nanotechnol 12(6):4911–4918PubMedGoogle Scholar
  18. Fu G, Vary PS, Lin C-T (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109(18):8889–8898PubMedGoogle Scholar
  19. Gabbay J, Borkow G, Mishal J, Magen E, Zatcoff R, Shemer-Avni Y (2006) Copper oxide impregnated textiles with potent biocidal activities. J Ind Text 35(4):323–335Google Scholar
  20. Giavaresi G, Fini M, Cigada A, Chiesa R, Rondelli G, Rimondini L, Aldini NN, Martini L, Giardino R (2003a) Histomorphometric and microhardness assessments of sheep cortical bone surrounding titanium implants with different surface treatments. J Biomed Mater Res A 67(1):112–120PubMedGoogle Scholar
  21. Giavaresi G, Fini M, Cigada A, Chiesa R, Rondelli G, Rimondini L, Torricelli P, Aldini NN, Giardino R (2003b) Mechanical and histomorphometric evaluations of titanium implants with different surface treatments inserted in sheep cortical bone. Biomaterials 24(9):1583–1594PubMedGoogle Scholar
  22. Gould SW, Fielder MD, Kelly AF, Morgan M, Kenny J, Naughton DP (2009) The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens. Ann Microbiol 59(1):151–156Google Scholar
  23. Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56(16):1639–1657Google Scholar
  24. Gupta K, Singh R, Pandey A, Pandey A (2013) Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli. Beilstein J Nanotechnol 4:345PubMedPubMedCentralGoogle Scholar
  25. Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35(9):780–789PubMedGoogle Scholar
  26. Hoexter DL (2002) Bone regeneration graft materials. J Oral Implantol 28(6):290–294PubMedGoogle Scholar
  27. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96Google Scholar
  28. Ishizawa H, Fujino M, Ogino M (1995) Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide films containing Ca and P. J Biomed Mater Res A 29(11):1459–1468Google Scholar
  29. Jašková V, Hochmannová L, Vytřasová J (2013) TiO2 and ZnO nanoparticles in photocatalytic and hygienic coatings. Int J Photoenergy 2013:795060Google Scholar
  30. Jiang D, Zhou T, Sun Q, Yu Y, Shi G, Jin L (2011) Enhanced visible-light-induced photoelectrocatalytic degradation of methyl orange by CdS sensitized TiO2 nanotube arrays electrode. Chin J Chem 29(11):2505–2510Google Scholar
  31. Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732PubMedGoogle Scholar
  32. Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano-and micrometer size. Toxicol Lett 188(2):112–118PubMedGoogle Scholar
  33. Kim B, Kim D, Cho D, Cho S (2003) Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52(1):277–281PubMedGoogle Scholar
  34. Kim C, Kim S, Oh WK, Choi M, Jang J (2012) Efficient intracellular delivery of camptothecin by silica/titania hollow nanoparticles. Chem A Eur J 18(16):4902–4908Google Scholar
  35. Lai M, Cai K, Zhao L, Chen X, Hou Y, Yang Z (2011) Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules 12(4):1097–1105PubMedGoogle Scholar
  36. Leite GC, Padoveze MC (2012) Copper as an antimicrobial agent in healthcare: an integrative literature review. J Infect Control 1(2):33–36Google Scholar
  37. Li L-H, Kong Y-M, Kim H-W, Kim Y-W, Kim H-E, Heo S-J, Koak J-Y (2004) Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 25(14):2867–2875PubMedGoogle Scholar
  38. Li Q, Wang X, Lu X, Tian H, Jiang H, Lv G, Guo D, Wu C, Chen B (2009) The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers. Biomaterials 30(27):4708–4715PubMedGoogle Scholar
  39. Long R, English NJ (2009) Band gap engineering of (N,Ta)-codoped TiO2: A first-principles calculation. Chem Phys Lett 478(4–6):175–179Google Scholar
  40. Lu Y, Su C, Wang A, Liu H (2011) Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS Biol 9(7):e1001105PubMedPubMedCentralGoogle Scholar
  41. Maness P-C, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098PubMedPubMedCentralGoogle Scholar
  42. Maxian SH, Zawadsky JP, Dunn MG (1994) Effect of Ca/P coating resorption and surgical fit on the bone/implant interface. J Biomed Mater Res A 28(11):1311–1319Google Scholar
  43. McNamara K, Tofail SA (2017) Nanoparticles in biomedical applications. Adv Phys X 2(1):54–88Google Scholar
  44. Navarro M, Michiardi A, Castano O, Planell J (2008) Biomaterials in orthopaedics. J R Soc Interface 5(27):1137–1158PubMedPubMedCentralGoogle Scholar
  45. Pankhurst QA, Connolly J, Jones S, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167Google Scholar
  46. Park M, Kwon S, Min B (2002) Electronic structures of doped anatase TiO2: Ti1-xMxO2 (M=Co, Mn, Fe, Ni). Phys Rev B 65(16):161201Google Scholar
  47. Park J, Bauer S, von der Mark K, Schmuki P (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7(6):1686–1691PubMedGoogle Scholar
  48. Park J, Bauer S, Schlegel KA, Neukam FW, von der Mark K, Schmuki P (2009) TiO2 nanotube surfaces: 15 nm—an optimal length scale of surface topography for cell adhesion and differentiation. Small 5(6):666–671PubMedGoogle Scholar
  49. Petersen RC (2014) Titanium implant osseointegration problems with alternate solutions using epoxy/carbon-fiber-reinforced composite. Metals 4(4):549–569PubMedPubMedCentralGoogle Scholar
  50. Popat KC, Leoni L, Grimes CA, Desai TA (2007) Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28(21):3188–3197PubMedGoogle Scholar
  51. Qin Y, Sun L, Li X, Cao Q, Wang H, Tang X, Ye L (2011) Highly water-dispersible TiO2 nanoparticles for doxorubicin delivery: effect of loading mode on therapeutic efficacy. J Mater Chem 21(44):18003–18010Google Scholar
  52. Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7):4020–4028PubMedGoogle Scholar
  53. Rahim S, Radiman S, Hamzah A (2012) Inactivation of Escherichia coli under fluorescent lamp using TiO2 nanoparticles synthesized via sol gel method. Sains Malays 41(2):219–224Google Scholar
  54. Ravishankar Rai V, Jamuna Bai A (2011) Nanoparticles and their potential application as antimicrobials. In: Mendez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, Badajoz, pp 197–209Google Scholar
  55. Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590PubMedGoogle Scholar
  56. Rincón AG, Pulgarin C (2003) Photocatalytical inactivation of E. coli: effect of (continuous–intermittent) light intensity and of (suspended–fixed) TiO2 concentration. Appl Catal Environ 44(3):263–284Google Scholar
  57. Rodriguez-Llamazares S, Mondaca M, Badilla C, Maldonado A (2012) PVC/copper oxide composites and their effect on bacterial adherence. J Chil Chem Soc 57(2):1163–1165Google Scholar
  58. Saharudin KA, Sreekantan S, Abd Aziz S, Hazan R, Lai CW, Mydin R, Mat I (2013) Surface Modification and Bioactivity of Anodic Ti6Al4V Alloy. J Nanosci Nanotechnol 13(3):1696–1705PubMedGoogle Scholar
  59. Sayılkan F, Asiltürk M, Kiraz N, Burunkaya E, Arpaç E, Sayılkan H (2009) Photocatalytic antibacterial performance of Sn4+ doped TiO2 thin films on glass substrate. J Hazard Mater 162(2):1309–1316PubMedGoogle Scholar
  60. Scorzoni L, Benaducci T, Almeida AMF, Silva DHS, Bolzani VS, Gianinni MJSM (2007) The use of standard methodology for determination of antifungal activity of natural products against medical yeasts Candida sp. and Cryptococcus sp. Braz J Microbiol 38(3):391–397Google Scholar
  61. Seven O, Dindar B, Aydemir S, Metin D, Ozinel M, Icli S (2004) Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust. J Photochem Photobiol A Chem 165(1):103–107Google Scholar
  62. Smith YR, Kar A, Subramanian V (2009) Investigation of physicochemical parameters that influence photocatalytic degradation of methyl orange over TiO2 nanotubes. Ind Eng Chem Res 48(23):10268–10276Google Scholar
  63. Son WW, Zhu X, Hi S, Ong JL, Kim K (2003) In vivo histological response to anodized and anodized/hydrothermally treated titanium implants. J Biomed Mater Res B Appl Biomater 66(2):520–525PubMedGoogle Scholar
  64. Swetha S, Santhosh S, Geetha Balakrishna R (2010) Synthesis and comparative study of nano-TiO2 over Degussa P-25 in disinfection of water. Photochem Photobiol 86(3):628–632PubMedGoogle Scholar
  65. Tartaj P, del Puerto MM, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182Google Scholar
  66. Thompson TL, Yates JT Jr (2006) Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem Rev 106(10):4428–4453PubMedGoogle Scholar
  67. Varghese S, ElFakhri SO, Sheel DW, Sheel P, Bolton FJE, Foster HA (2013) Antimicrobial activity of novel nanostructured Cu-SiO2 coatings prepared by chemical vapour deposition against hospital related pathogens. AMB Express 3(1):53–60PubMedPubMedCentralGoogle Scholar
  68. Vasilev K, Cook J, Griesser HJ (2009) Antibacterial surfaces for biomedical devices. Expert Rev Med Devices 6(5):553–567PubMedGoogle Scholar
  69. Venkatasubbu GD, Ramasamy S, Reddy GP, Kumar J (2013) In vitro and In vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles. Biomed Microdevices 15(4):711–726PubMedGoogle Scholar
  70. Wang S, Zhou S (2011) Photodegradation of methyl orange by photocatalyst of CNTs/P-TiO(2) under UV and visible-light irradiation. J Hazard Mater 185(1):77–85PubMedGoogle Scholar
  71. Wattal C, Raveendran R, Goel N, Oberoi JK, Rao BK (2014) Ecology of blood stream infection and antibiotic resistance in intensive care unit at a tertiary care hospital in North India. Braz J Infect Dis 18(3):245–251PubMedGoogle Scholar
  72. Wu KC-W, Yamauchi Y, Hong C-Y, Yang Y-H, Liang Y-H, Funatsu T, Tsunoda M (2011) Biocompatible, surface functionalized mesoporous titania nanoparticles for intracellular imaging and anticancer drug delivery. Chem Commun 47(18):5232–5234Google Scholar
  73. Wu S, Liu X, Yeung KW, Liu C, Yang X (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep 80:1–36Google Scholar
  74. Yadav HM, Thorat ND, Yallapu MM, Tofail SA, Kim J-S (2017) Functional TiO2 nanocoral architecture for light-activated cancer chemotherapy. J Mater Chem B 5(7):1461–1470Google Scholar
  75. Zhang H, Wang C, Chen B, Wang X (2012) Daunorubicin-TiO2 nanocomposites as a “smart” pH-responsive drug delivery system. Int J Nanomedicine 7:235–242PubMedPubMedCentralGoogle Scholar
  76. Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J (2004) Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials 25(18):4087–4103PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Khairul Arifah Saharudin
    • 1
  • Srimala Sreekantan
    • 1
    Email author
  • Rabiatul Basria S. M. N. Mydin
    • 2
  • Siti Nor Qurratu Aini Abd Aziz
    • 1
  • G. Ambarasan Govindasamy
    • 1
  1. 1.School of Materials & Mineral Resources Engineering, Engineering CampusUniversiti Sains MalaysiaNibong TebalMalaysia
  2. 2.Oncological and Radiological Sciences Cluster, Advanced Medical and Dental InstituteUniversiti Sains MalaysiaKepala BatasMalaysia

Personalised recommendations