Drug Transporters

  • Alan TaleviEmail author
  • Carolina Leticia Bellera
  • Guido Pesce


Membrane transporters perform a central function in protecting the body from xenobiotics (either by preventing their absorption, limiting their distribution or promoting their elimination). Transporters can also take part in the traffic and compartmentalization of endogenous compounds. In some particular cases, they may favor drug absorption and/or distribution. Accordingly, they are of major importance from a pharmacological perspective. Transporter protein science is an emerging field, and their identification and characterization continue to evolve, with their medical and pharmaceutical impact being still far from being fully understood. In relation to drug kinetics, two gene families coding for polyspecific transporters are of particular importance: the ATP-binding cassette (ABC) transporters and the solute carrier (SLC) transporters. Both will be discussed in this last chapter of this volume.


ABC transporters ATP-binding cassette transporters Cross-resistance Drug elimination Drug transporters Efflux transporters Elimination Kidney Liver MDR1 MRP Multidrug resistance issues Multidrug resistance-associated proteins P-glycoproteins Pgp Organic anion transporters SLC transporters Solute carrier transporters 


  1. Annaert P, Swift D, Lee JK et al (2007) Drug transport in the liver. In You G, Morris ME (eds). John Wiley & Sons, Inc., HobokenGoogle Scholar
  2. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951CrossRefGoogle Scholar
  3. Borst P, Evers R, Kool M et al (2000) A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 92:1295–1302CrossRefGoogle Scholar
  4. Carneiro A, Blakely R (2006) Serotonin-, protein kinase C-, and Hic-5-associated redistribution of the platelet serotonin transporter. J Biol Chem 281:24769–24780CrossRefGoogle Scholar
  5. Choi YH, Yu AM (2014) ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des 20:793–807CrossRefGoogle Scholar
  6. Couyoupetrou M, Gantner ME, Di Ianni ME et al (2017) Computer-aided recognition of ABC transporters substrates and its application to the development of new drugs for refractory epilepsy. Mini Rev Med Chem 17:205–215CrossRefGoogle Scholar
  7. Daws L, Gould G (2011) Ontogeny and regulation of the serotonin transporter: Providing insights into human disorders. Pharmacol Ther 131:61–79CrossRefGoogle Scholar
  8. Di L, Keefer C, Scott DO et al (2012) Mechanistic insights from comparing intrinsic clearance values between human liver microsomes and hepatocytes to guide drug design. Eur J Med Chem 57:441–448CrossRefGoogle Scholar
  9. Eiden LE, Weihe E (2011) VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann N Y Acad Sci 1216:86–98CrossRefGoogle Scholar
  10. Erickson JD, Eiden LE (1993) Functional identification and molecular cloning of a human brain vesicle monoamine transporter. J Neurochem 61:2314–2317CrossRefGoogle Scholar
  11. Fagiolino P (2017) Farmacocinética y biofarmacia. Parte I: principios fundamentales. UdelaR-FQ; FUNDAQUIM, MontevideoGoogle Scholar
  12. Feldmann M, Koepp M (2016) ABC transporters and drug resistance in patients with epilepsy. Curr Pharm Des 22:5793–5807CrossRefGoogle Scholar
  13. Ferman C, Baladi M, McFadden L et al (2015) Regulation of the dopamine and vesicular monoamine transporters: Pharmacological targets and implications for disease. Pharmacol Rev 67:1005–1024CrossRefGoogle Scholar
  14. Ferreira RJ, Ferreira MJ, dos Santos DJ (2013) Molecular docking characterizes substrate-binding sites and efflux modulation mechanisms within P-glycoprotein. J Chem Inf Model 53:1747–1760CrossRefGoogle Scholar
  15. Forrest LR, Rudnick G (2009) The rocking bundle: A mechanism for ion-coupled solute flux by symmetrical transporters. Physiology (Bethesda) 24:377–386Google Scholar
  16. Gether U, Andersen PH, Larsson OM et al (2006) Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol Sci 27:375–383CrossRefGoogle Scholar
  17. Hagenbuch B, Stieger B (2013) The SLCO (former SLC21) superfamily of transporters. Mol Asp Med 34:396–412CrossRefGoogle Scholar
  18. Homolya L, Váradi A, Sarkadi B (2003) Multidrug resistance-associated proteins: Export pumps for conjugates with glutathione, glucuronate or sulfate. Biofactors 17:103–114CrossRefGoogle Scholar
  19. Huwyler J, Wright MB, Gutmann H, Drewe J (2006) Induction of cytochrome P450 3A4 and P-glycoprotein by the isoxazolyl-penicillin antibiotic flucloxacillin. Curr Drg Metab 7:119–126CrossRefGoogle Scholar
  20. Iannetti P, Spalice A, Parisi P (2005) Calcium-channel blocker verapamil administration in prolonged and refractory status epilepticus. Epilepsia 46:967–969CrossRefGoogle Scholar
  21. Katoh M, Nakajima M, Yamazaki H et al (2001) Inhibitory effects of CYP3A4 substrates and their metabolites on P-glycoprotein-mediated transport. Eur J Pharm Sci 12:505–513CrossRefGoogle Scholar
  22. Kim RB (2002) Drugs as p-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev 34:47–54CrossRefGoogle Scholar
  23. Koepsell H (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Asp Med 34:413–435CrossRefGoogle Scholar
  24. Kristensen A, Andersen J, Jørgensen T et al (2011) SLC6 neurotransmitter transporters: Structure, function, and regulation. Pharmacol Rev 63:585–640CrossRefGoogle Scholar
  25. Lawal HO, Krantz DE (2013) SLC18: vesicular neurotransmitter transporters for monoamines and acetylcholine. Mol Asp Med 34:360–372CrossRefGoogle Scholar
  26. Lhommé C, Joly F, Walker JL et al (2008) (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. J Clin Oncol 26:2674–2682CrossRefGoogle Scholar
  27. Lohr K, Masoud S, Salahpor A et al (2017) Membrane transport as mediators of synaptic dopamine dynamic: implications for disease. Eur J Neurosci 11:3499–3511Google Scholar
  28. Luna-Tortós C, Fedrowitz M, Löscher W (2008) Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmcology 55:1364–1375CrossRefGoogle Scholar
  29. Mao Q, Unadkat JD (2015) Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS J 17:65–82CrossRefGoogle Scholar
  30. Matheny CJ, Ali RY, Yang X et al (2004) Effect of prototypical inducing agents on P-glycoprotein and CYP3A expression in mouse tissues. Drug Metab Dispos 32:1008–1014PubMedGoogle Scholar
  31. Nanayakkara AK, Follit CA, Chen G, Williams NS, Vogel PD, Wise JG (2018) Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Scientific Reports 8 (1)Google Scholar
  32. Omiatek DM, Bressler AJ, Cans AS et al (2013) The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Sci Rep 3:1447CrossRefGoogle Scholar
  33. Pereira CD, Martins F, Wiltfang J et al (2018) ABC transporters are key players in Alzheimer's disease. J Alzheimer Dis 61:463–485Google Scholar
  34. Pérez-Tomás R (2006) Multidrug resistance: retrospect and prospects in anti-cancer drug treatment. Curr Med Chem 13:1859–1876CrossRefGoogle Scholar
  35. Potschka H, Luna-Munguia H (2014) CNS transporters and drug delivery in epilepsy. Curr Pharm Des 20:1534–1542CrossRefGoogle Scholar
  36. Qian Y, Melikian HE, Rye DB et al (1995) Identification and characterization of antidepressant-sensitive serotonin transporter proteins using site-specific antibodies. J Neurosci 15:1261–1274CrossRefGoogle Scholar
  37. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: The power to change. Nat Rev Mol Cell Biol 10:218–227CrossRefGoogle Scholar
  38. Reith ME, Blough BE, Hong WC et al (2015) Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug Alcohol Depend 147:1–19CrossRefGoogle Scholar
  39. Rudnick G, Steiner-Mordoch SS, Fishkes H et al (1990) Energetics of reserpine binding and occlusion by the chromaffin granule biogenic amine transporter. Biochemistry 29:603–608CrossRefGoogle Scholar
  40. Rudnick G (1998) Bioenergetics of neurotransmitter transport. J Bioenerg Biomembr 30:173–185CrossRefGoogle Scholar
  41. Russel FGM (2010) In: Pang KS, Rodrigues AD, Peter RM (eds) Transporters: importance in drug absorption, distribution, and removal. Springer, New YorkGoogle Scholar
  42. Safa A (2004) Identification and characterization of the binding sites of P-Glycoprotein for multidrug resistance-related drugs and modulators. Curr Med Chem Anticancer Agents 4 (1):1–17Google Scholar
  43. Salphaty L, Benet LZ (1998) Modulation of P-glycoprotein expression by cytochrome P450 3A inducers in male and female rat livers. Biochem Pharmacol 55:387–395CrossRefGoogle Scholar
  44. Sarkadi B, Ozvegy-Laczka C, Német K et al (2004) BCG2 -- a transporter for all seasons. FEBS Lett 567:116–120CrossRefGoogle Scholar
  45. Sarkadi B, Homolya L, Szakács G et al (2006) Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 86:1179–1236CrossRefGoogle Scholar
  46. Singh SK, Piscitelli CL, Yamashita A et al (2008) A competitive inhibitor traps LeuT in an open-to-out conformation. Science 322:1655–1661CrossRefGoogle Scholar
  47. Sitte H, Freissmuth M (2015) Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharmacol Sci 36:41–50CrossRefGoogle Scholar
  48. Spiller HA, Hays HL, Aleguas A Jr (2013) Overdose of drugs for attention-deficit hyperactivity disorder: Clinical presentation, mechanisms of toxicity, and management. CNS Drugs 27:531–543CrossRefGoogle Scholar
  49. Schlessinger A, Matsson P, Shima JE et al (2010) Comparison of human solute carriers. Protein Sci 19:412–428PubMedPubMedCentralGoogle Scholar
  50. Schlessinger A, Khuri N, Giacomini KM et al (2013) Molecular modeling and ligand docking for solute carrier (SLC) transporters. Curr Top Med Chem 13:843–856CrossRefGoogle Scholar
  51. Subramanian N, Schumann-Gillett A, Mark AE, O’Mara ML (2016) Understanding the accumulation of P-glycoprotein substrates within cells: The effect of cholesterol on membrane partitioning. Biochimica et Biophysica Acta (BBA) - Biomembranes 1858 (4):776–782Google Scholar
  52. Sun YL, Patel A, Kumar P et al (2012) Role of ABC transporters in cancer chemotherapy. Chin J Cancer 31:51–57CrossRefGoogle Scholar
  53. Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547CrossRefGoogle Scholar
  54. Sulzer D, Maidment NT, Rayport S (1993) Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J Neurochem 60:527–535CrossRefGoogle Scholar
  55. Sulzer D, Sonders MS, Poulsen NW et al (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433CrossRefGoogle Scholar
  56. Taft DR (2009) In: Hacker M, Bachmann K, Messer W (eds) Drug excretion. Academic Press, BurlingtonCrossRefGoogle Scholar
  57. Ter Beek J, Guskov A, Slotboom DJ (2014) Structural diversity of ABC transporters. J Gen Physiol 143:419–435CrossRefGoogle Scholar
  58. Tiwari AK, Sodani K, Dai CL et al (2011) Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol 12:570–594CrossRefGoogle Scholar
  59. US Food and Drug Administration (2017a) In vitro metabolism and transporter-mediated drug-drug interaction studies. Guidance for industryGoogle Scholar
  60. US Food and Drug Administration (2017b) Clinical drug interaction studies - Study design, data analysis, and clinical implications. Guidance for industryGoogle Scholar
  61. Wacher VJ, Wu C-Y, Benet LZ, (1995) Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: Implications for drug delivery and activity in cancer chemotherapy. Molecular Carcinogenesis 13 (3):129–134Google Scholar
  62. Zhou SF (2008) Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab 9:310–322CrossRefGoogle Scholar

Further Reading

  1. Transporter science is an expanding field, and this chapter is only intended as an introduction to the topic. The reader may find deeper insight into some excellent volumes that specifically deal with the subject, such as the ones edited by You and Morris (Drug Transporters: Molecular Characterization and Role in Drug Disposition, Second Edition, Wiley, 2014); Pang, Rodrigues, and Peter (Enzyme- and Transporter-based Drug Drug Interactions. Progress and Future Challenges, Springer, 2010); or Ecker and Chiba (Transporters as Drug Carriers. Structure, Function, Substrates, Wiley-VCH, 2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alan Talevi
    • 1
    • 2
    Email author
  • Carolina Leticia Bellera
    • 3
  • Guido Pesce
    • 4
  1. 1.Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact SciencesUniversity of La Plata (UNLP)La PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)La PlataArgentina
  3. 3.Medicinal Chemistry/Laboratory of Bioactive Research and Development (LIDeB), Faculty of Exact SciencesUniversidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  4. 4.Department of PharmacologyArgentinean National Institute of Medications (INAME), Administración Nacional de Alimentos, Medicamentos y Tecnología Médica (ANMAT)Buenos AiresArgentina

Personalised recommendations