Advertisement

Nanofabrication by Cryptogams: Exploring the Unexplored

  • Sabiha Zamani
  • Babita Jha
  • Anal K. Jha
  • Kamal Prasad
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

This chapter attempts to explore cryptogams, the salient members of plant diversity as tools for nanofabrication. It presents an overview about cryptogams, its phylogeny, and role in plant diversity along with its ethnomedicine properties. The cryptogams have been gifted with immense reservoir of active metabolites having bio-reductive and pharmacological potentials. Therefore, the chapter describes the various possibilities and benefits with intent to draw attention towards these members for nanofabrication explorations. It further attempts to decipher the fundamental science behind the fabrication and summarizes the various pharmacological applications.

Keywords

Nanofabrication Cryptogams Bryophytes Pteridophytes Antimicrobial Antifungal Larvicidal Cytotoxicity Catalytic Antioxidant 

References

  1. Acharya K, Sarkar J (2014) Bryo-synthesis of gold nanoparticles. Int J Pharm Sci Rev Res 29:82–86Google Scholar
  2. Adyanthaya SD, Sastry MJ (2004) Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J Colloid Interface Sci 269:97–102PubMedCrossRefGoogle Scholar
  3. Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 81:81–86PubMedCrossRefGoogle Scholar
  4. Ahmed KBA, Subramaniam S, Veerappan G, Hari N, Sivasubramanian A, Veerappan A (2014) β-Sitosterol-d-glucopyranoside isolated from Desmostachya bipinnata mediates photoinduced rapid green synthesis of silver nanoparticles. RSC Adv 4:59130–59136CrossRefGoogle Scholar
  5. Akhtar MS, Panwar J, Yun YS (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 1:591–602CrossRefGoogle Scholar
  6. Alam A, Tripathi A, Vats S, Behera KK, Sharma V (2011) In vitro antifungal efficacies of aqueous extract of Dumortiera hirsute (Swaegr.) Nees against sporulation and growth of postharvest phytopathogenic fungi. Arch Bryol 103:1–9Google Scholar
  7. Alam A, Sharma SC, Sharma V (2012) In vitro antifungal efficacies of aqueous extract of Targionia hypophylla L. against growth of some pathogenic fungi. Int J Ayurvedic Herb Med 2:229–233Google Scholar
  8. Amro NA, Kotra LP, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu G (2000) High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16:2789–2796CrossRefGoogle Scholar
  9. Antony RS, Khan AE, Thomas J (2000) Rare, endangered and threatened ferns from Chemunji hills, Kerala. J Econ Taxon Bot 24:413–415Google Scholar
  10. Arunachalam KD, Annamalai SK, Arunachalam AM, Kennedy S (2013) Green synthesis of crystalline silver nanoparticles using Indigofera aspalathoides-medicinal plant extract for wound healing applications. Asian J Chem 25:S311–S314Google Scholar
  11. Asakawa Y (2001) Recent advances in phytochemistry of bryophytes acetogenins, terpenoids and bis(bibenzyl)s from selected Japanese, Taiwanese, New Zealand, Argentinean and European liverworts. Phytochemistry 56:297–312PubMedCrossRefGoogle Scholar
  12. Asakawa Y (2007) Biologically active compounds from bryophytes. Pure Appl Chem 79:557–580CrossRefGoogle Scholar
  13. Asakawa Y, Herz W, Kirby G, Moore RE, Steglich W, Tamm C (1995) Chemical constituents of the Bryophytes. In: Progress in the chemistry of organic natural products, vol 65. Springer, Vienna, pp 1–562CrossRefGoogle Scholar
  14. Asha PS, Francis J (2015) One pot green synthesis of ZnO nanoparticles using Azolla extract and accessing its biological activities. Int J Curr Res 7:22520–22527Google Scholar
  15. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticles Article ID 689419. https://doi.org/10.1155/2014/689419 CrossRefGoogle Scholar
  16. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081 CrossRefPubMedGoogle Scholar
  17. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Banerjee RD (2001) Antimicrobial activities of bryophytes: a review. In: Nath V, Asthana AK (eds) Perspectives in Indian bryology. Bishen Singh Mahendra Pal Singh Publisher, Dehradun, IndiaGoogle Scholar
  19. Basha SK, Govindaraju K, Manikandan R, Ahn JS, Bae EY, Singaravelu G (2010) Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity. Colloids Surf B Biointerfaces 75:405–409CrossRefGoogle Scholar
  20. Baskaran X, Antony VGV, Parimelazhagan T, Rao DM, Zhang S (2016) Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible silver nanoparticles from an early tracheophyte, Pteris tripartita Sw. Int J Nanomed 11:5789–5805CrossRefGoogle Scholar
  21. Bhor G, Maskare S, Hinge S, Singh L, Nalwade A (2014) Synthesis of silver nanoparticles by using leaflet extract of Nephrolepi exaltata L. and evaluation of antibacterial activity against human and plant pathogenic bacteria. Asian J Pharm Technol Innov 2:23–31Google Scholar
  22. Britto AJD, Herin SGD, Benjamin JRKP (2012) Pteris biaurita L.: a potential antibacterial fern against Xanthomonas and Aeromonas bacteria. J Pharm Res 5:678–680Google Scholar
  23. Britto AJD, Gracelin DHS, Kumar PBJR (2014) Antibacterial activity of silver nanoparticles synthesized from a few medicinal ferns. Int J Pharm Res Dev 6:25–29Google Scholar
  24. Buhroo AA, Nisa G, Asrafuzzaman S, Prasad R, Rasheed R, Bhattacharyya A (2017) Biogenic silver nanoparticles from Trichodesma indicum aqueous leaf extract against Mythimna separata and evaluation of its larvicidal efficacy. J Plant Prot Res 57(2):194–200CrossRefGoogle Scholar
  25. Chefetz B, Sominski L, Pinchas M, Ginsburg T, Elmachliy S, Tel-Or E, Gedanken A (2005) New approach for the removal of metal ions from water: adsorption onto aquatic plants and microwave reaction for the fabrication of nanometals. J Phys Chem B 109:15179–15181PubMedCrossRefGoogle Scholar
  26. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative 22 disorders. Science 262:689–695CrossRefPubMedGoogle Scholar
  27. Cramer JV, Asakawa Y (1999) Phytochemistry of bryophytes. In: Romeo J (ed) Phytochemicals in human health protection, nutrition, and plant defense. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  28. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles, frontiers in microbiology antimicrobial, resistance chemotherapy. Front Microbiol 7:1831, 17p. https://doi.org/10.3389/fmicb.2016.01831 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dalli AK, Saha G, Chakraborty U (2007) Characterization of antimicrobial compounds from a common fern, pteris biaurita. Indian J Exp Biol 45:285–290PubMedGoogle Scholar
  30. Dauthal P, Mukhopadhyay M (2016) Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res 55:9557–9577CrossRefGoogle Scholar
  31. Dhillon NK, Mukhopadhyay SS (2015) Nanotechnology and allelopathy: synergism in action. J Crop Weed 11:187–191Google Scholar
  32. Dubey SP, Lahtinen M, Sillanp M (2010) Tansy fruit mediated greener synthesis of silver and goldnanoparticles. Process Biochem 45:1065–1071CrossRefGoogle Scholar
  33. Dulger B, Hacıolu N, Uyar G (2009) Evaluation of antimicrobial activity of some mosses from Turkey. Asian J Chem 21:4093–4096Google Scholar
  34. Durai P, Gajendran ACB, Ramar M, Pappu S, Kasivelu G, Thirunavukkarasu A (2014) Synthesis and characterization of silver nanoparticles using crystal compound of sodium para-hydroxybenzoate tetrahydrate isolated from Vitex negundo L. leaves and its apoptotic effect on human colon cancer cell lines. Eur J Med Chem 84:90–99PubMedCrossRefGoogle Scholar
  35. Edison TJI, Sethuraman MG (2012) Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem 47:1351–1357CrossRefGoogle Scholar
  36. Everet R, Susan E (2013) Biology of plants, 18th edn. W.H. Freeman, New YorkGoogle Scholar
  37. Firdhouse MJ, Lalitha P (2013) Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis-antiproliferative effect against prostate cancer cells. Cancer Nanotechnol 4:137–143PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ganji M, Khosravi M, Rakhshaee R (2005) Biosorption of Pb, Cd, Cu and Zn from the wastewater by treated Azolla filiculoides with H2O2/MgCl2. Int J Environ Sci Technol 1:265–271CrossRefGoogle Scholar
  39. Garg S, Chandra A, Mazumder A, Mazumder R (2014) Green synthesis of silver nanoparticles using Arnebia nobilis root extract and wound healing potential of its hydrogel. Asian J Pharm 8:95–101CrossRefGoogle Scholar
  40. Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39:22–28CrossRefGoogle Scholar
  41. Ghoreishi SM, Behpour M, Khayatkashani M (2011) Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry. Phys E Low Dimens Syst Nanostruct 44:97–104CrossRefGoogle Scholar
  42. Giles KL (1971) Dedifferentiation and regeneration in bryophytes: a selective review. N Z J Bot 9:689–694CrossRefGoogle Scholar
  43. Glime JM (2007) Economic and ethnic uses of bryophytes, Flora of North American North of Mexico. Bryophytes 27:14–41Google Scholar
  44. Ghosh K, Harish CR, Baghel MS (2012) A preliminary pharmacognostical and physcicochemical assay of Shunthikhana granules. Internat Res J Pharmacy 3:170–175Google Scholar
  45. Ilhan S, Savaroglu F, Çolak F, Isçen C, Erdemgil F (2006) Antimicrobial activity of Palustriella commutata (Hedw.) Ochyra extracts (Bryophyta). Turk J Biol 30:149–152Google Scholar
  46. Iram F, Iqbal MS, Athar MM, Saeed MZ, Yasmeen A, Ahmad R (2014) Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto toxicity study. Carbohydr Polym 104:29–33PubMedCrossRefGoogle Scholar
  47. Jha AK, Prasad K (2016) Aquatic fern (Azolla sp.) assisted synthesis of gold nanoparticles. Int J Nanosci 15:1650008–1650012CrossRefGoogle Scholar
  48. Jha AK, Prasad K, Prasad K, Kulkarni AR (2009) Plant system: Nature’s nanofactory. Colloids Surf B Biointerfaces 73:219–223PubMedCrossRefGoogle Scholar
  49. Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol Gel Sci Technol. https://doi.org/10.1007/s10971-018-4666-2 CrossRefGoogle Scholar
  50. Kaler A, Nankar R, Bhattacharyya MS, Banerjee UC (2011) Extracellular biosynthesis of silver nanoparticles using aqueous extract of Candida viswanathii. J Bionanosci 5:53–58CrossRefGoogle Scholar
  51. Kalita S, Kandimalla R, Sharma KK, Kataki AC, Deka M, Kotoky J (2016) Amoxicillin functionalized gold nanoparticles reverts MRSA resistance. Mater Sci Eng C 61:720–727CrossRefGoogle Scholar
  52. Kang KC, Kim SS, Baik MH, Choi JW, Kwon SH (2008) Synthesis of silver nanoparticles using green chemical method. Appl Chem 12:281–284Google Scholar
  53. Karthik V, Raju K, Ayyanar M, Gowrishankar K, Sekar T (2011) Ethno medicinal uses of pteridophytes in Kolli Hills, Eastern Ghats of Tamil Nadu, India. J Nat Prod Plant Resour 1:50–55Google Scholar
  54. Karuppaiya P, Satheeshkumar E, Chao WT, Kao LY, Chen EF, Tsay HS (2013) Anti-metastatic activity of biologically synthesized gold nanoparticles on human fibrosarcoma cell line HT-1080. Colloids Surf B Biointerfaces 110:163–170PubMedCrossRefGoogle Scholar
  55. Khare CP (2007) Indian medicinal plants. Springer, BerlinGoogle Scholar
  56. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Haing M (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101CrossRefGoogle Scholar
  57. Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306PubMedCrossRefGoogle Scholar
  58. Kulkarni AP, Srivastava AA, Harpale PM, Zunjarrao RS (2011) Plant mediated synthesis of silver nanoparticles tapping the unexploited resources. J Nat Prod Plant Resour 1:100–107Google Scholar
  59. Kulkarni AP, Srivastava AA, Nagalgaon RK, Zunjarrao RS (2012) Phytofabrication of silver nanoparticles from a novel plant source and its application. Inte J Biol Pharm Res 3:417–421Google Scholar
  60. Kumar K, Singh KK, Asthana AK, Nath V (1999) Ethnotherapeutics of bryophyte plagiochasma appendiculatum among the Gaddi Tribes of Kangra Valley, Himachal Pradesh, India. Pharm Biol 37:1–4CrossRefGoogle Scholar
  61. Kumari P, Otaghavri AM, Govindpyari H, Bahuguna YM, Uniyal PN (2011) Some ethno-medicinally important pteridophytes of India. Int J Med Arom Plants 1:18–22Google Scholar
  62. Lai HY, Lim YY (2011) Antioxidant Properties of some Malaysian Ferns. In: Proceedings of third international conferene on chemical, biological and environmental engineering, vol 20, pp 8–12Google Scholar
  63. Li CZ, Bogozi A, Huang W, Tao NJ (1999a) Fabrication of stable metallic nanowires with quantized conductance. Nanotechnology 10:221–223CrossRefGoogle Scholar
  64. Li Y, Duan X, Qian Y, Li Y, Liao H (1999b) Nanocrystalline silver particles: synthesis, agglomeration, and sputtering induced by electron beam. J Colloid Interface Sci 209:347–349PubMedCrossRefGoogle Scholar
  65. Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2010) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biol Met 24:135–141Google Scholar
  66. Lohlau EH, Hashimoto T, Asakawa Y (2000) Chemical constituent of the liverwort Plagiochasma japonica and Marchantia tosana. J Hattori Bot Lab 88:271–275Google Scholar
  67. Luangpipat T, Beattie IR, Chisti Y, Richard GH (2011) Gold nanoparticles produced in amicroalgae. J Nanopart Res 13:6439–6445CrossRefGoogle Scholar
  68. Manickam VS, Irudayaraj V (1992) Pteridophyte flora of the Western Ghats, South India. B.I. Publications, New DelhiGoogle Scholar
  69. Mathur V, Vats S, Jain M, Bhojak J, Kamal R (2007) Antimicrobial activity of bioactive metabolites isolated from selected medicinal plants. Asian J Exp Sci 21:267–272Google Scholar
  70. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRefGoogle Scholar
  71. Mohsen SM, Ammar ASM (2009) Total phenolic contents and antioxidant activity of corn tassel extracts. Food Chem 112:595−598CrossRefGoogle Scholar
  72. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353PubMedCrossRefGoogle Scholar
  73. Mukherjee S, Dasari M, Priyamvada S, Kotcherlakota R, Bollua VS, Patra CR (2015) A green chemistry approach for the synthesis of gold nanoconjugates that induce the inhibition of cancer cell proliferation through induction of oxidative stress and their in vivo toxicity study. J Mater Chem B 3:3820–3830CrossRefGoogle Scholar
  74. Nalwade AR, Badhe MN, Pawale CB, Hinge SB (2013) Rapid biosynthesis of silver nanoparticles using fern leaflet extract and evaluation of their antibacterial activity. Int J Biol Technol 4:12–18Google Scholar
  75. Ortiz EP, Ruiz JHR, Márquez EAH, Esparza JL, Cornejo AD, González JCC, Cristóbal LFE, Lopez SYR (2017) Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram-positive and gram-negative bacteria. J Nanomater Article ID 4752314, 9p. https://doi.org/10.1155/2017/4752314 CrossRefGoogle Scholar
  76. Pan C, Chen YG, Ma XY, Jiang JH, He F, Zhang Y (2011) Phytochemical constituents and pharmacological activities of plants from the Genus adiantum: a review. Trop J Pharm Res 10:681–692Google Scholar
  77. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181CrossRefGoogle Scholar
  78. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams CS, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:R15–R27CrossRefGoogle Scholar
  79. Parihar P, Parihar L, Bohra A (2010) In vitro antibacterial activity of fronds (leaves) of some important pteridophytes. J Microbiol Antimicrob 2:19–22Google Scholar
  80. Park Y, Hongn YN, Weyers A, Kim YS, Linhardt RJ (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5:69–78PubMedCrossRefGoogle Scholar
  81. Paul B, Bhuyan B, Dhar D, Purkayastha DSS (2015) Green synthesis of silver nanoparticles using dried biomass of Diplazium esculentum (retz.) sw. and studies of their photocatalytic and anticoagulative activities. J Mol Liq 212:813–817CrossRefGoogle Scholar
  82. Perito B, Giorgetti E, Marsili P, Miranda MM (2016) Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution Beilstein. J Nanotechnol 7:465–473Google Scholar
  83. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042PubMedCrossRefGoogle Scholar
  84. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles Article ID 963961. https://doi.org/10.1155/2014/963961 CrossRefGoogle Scholar
  85. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  86. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363 CrossRefGoogle Scholar
  87. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Prathna TC, Mathew L, Chandrasekaran N, Ashok MR, Mukherjee A (2010) Biomimetic synthesis of nanoparticles: science, technology and applicability. In: Mukherjee A (ed) Biomimetics learning from nature. Intech Open. https://doi.org/10.5772/8776 Google Scholar
  89. Preethi R, Padma PR (2016) Green synthesis of silver nanobioconjugates from Piper betle leaves and its anticancer activity on A549 cells, Asian J Pharm Clin Res 9:252-257Google Scholar
  90. Rai RV, Bai J (2011) Nanoparticles and their potential application as antimicrobials. In: Vilas M (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex, Badajoz, pp 197–209Google Scholar
  91. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83CrossRefPubMedGoogle Scholar
  92. Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug resistant bacteria. J Appl Microbiol 112:841–852PubMedCrossRefGoogle Scholar
  93. Rai S, Yadav SK, Mathur K, Goyal M (2016) A review article on Adiantum incisum. World J Pharm Pharm Sci 5:861–867Google Scholar
  94. Ramamurthy V, Rajeswari DM, Gowri R, Vadivazhagi MK, Jayanthi, G, Raveendran S (2013) Study of the phytochemical analysis and antimicrobial activity of Dodonaea viscosa. J Pure Appl Zool 1:178-184Google Scholar
  95. Rajaganesh R, Muruganan K, Panneerselvam C, Jayashanthini S, Aziz AT, Roni M, Suresh U, Trivedi S, Rehman H, Higuchi A, Nicoletti M, Benelli G (2016) Fern-synthesized silver nanocrystals: towards a new class of mosquito oviposition deterrents? Res Vet Sci 109:40–51PubMedCrossRefGoogle Scholar
  96. Rhoades FM (1999) A review of lichen and bryophyte elemental content literature with reference to pacific northwest species. United States Department of Agriculture Forest Service Pacific Northwest Region, BellinghamGoogle Scholar
  97. Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501–1518PubMedCrossRefGoogle Scholar
  98. Roy B, Mukherjee S, Mukherjee N, Chowdhury P, Babu SPS (2014) Design and green synthesis of polymer inspired nanoparticles for the evaluation of their antimicrobial and antifilarial efficiency. RSC Adv 4:34487–34499CrossRefGoogle Scholar
  99. Sabovljevic A, Sokovic M, Sabovljevic M, Grubisic D (2006) Antimicrobial activity of Bryum argenteum. Fitoterapia 77:144–145PubMedCrossRefGoogle Scholar
  100. Sadeghi B, Gholamhoseinpoor F (2015) A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta A Mol Biomol Spectrosc 134:310–315PubMedCrossRefGoogle Scholar
  101. Sanghi R, Verma P (2010) pH dependant fungal proteins in the ‘green’ synthesis of gold nanoparticles. Adv Mater Let 1:193–199CrossRefGoogle Scholar
  102. Sant DG, Gujarathi TR, Harne SR, Ghosh S, Kitture R, Kale S, Chopade BA, Pardesi KR (2013) Adiantum phillipense L. frond assisted rapid green synthesis of gold and silver nanoparticles. J Nanoparticles 2013:1–9. https://doi.org/10.1155/2013/182320 CrossRefGoogle Scholar
  103. Santhoshkumar S and Nagarajan N (2014) Biological synthesis of silver nanoparticles of Adiantum capillus veneris L. and their evaluation of antibacterial activity against human pathogenic bacteria. J Pharm Sci Res 5:5511–5518Google Scholar
  104. Santos MG, Kelecom A, Paiva SR, Moraes MG, Rocha L, Garret R (2010) Phytochemical studies in pteridophytes growing in Brazil: A review. Am J Plant Sci Biotechnol 4:113–125Google Scholar
  105. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:2–6Google Scholar
  106. Sathish SS, Vimala A, Kanaga A, Murugan M (2016) Antioxidant and antimicrobial studies on biosynthesized silver nanoparticles using Bryum medianum mitt. A bryophyte from Kolli Hills, Eastern Ghats of Tamilnadu, India. J Pharm Sci Res 8:704–709Google Scholar
  107. Sawant O, Kadam VJ, Ghosh R (2009) In vitro free radical scavenging and antioxidant activity of Adiantum lunulatum. J Herb Med Toxicol 3:39–44Google Scholar
  108. Scher JM, Speakman JB, Zapp J, Becker H (2004) Bioactivity guided isolation of antifungal compounds from the liverwort Bazzania trilobata (L.) Gray SF. Phytochemistry 65:2583–2588PubMedCrossRefGoogle Scholar
  109. Schuettpelz E, Schneider H, Smith AR, Hovenkamp P, Prado J, Rouhan G, Salino A, Sundue M, Almeida TE,Parris B, Sessa EB, Field AR, de Gasper AL, Rothfels CJ, Windham MD, Lehnert M, Dauphin B, Ebihara A,Lehtonen S, Schwartsburd PB, Metzgar J, Zhang LB, Kuo LY, Brownsey PJ, Kato M, Arana MD (2016) A community-derived classification for extant lycophytes and ferns. J Systematics Evolution 54:563–603Google Scholar
  110. Shaw AJ, Péter S, Shaw B (2011) Bryophyte diversity and evolution: windows into the early evolution of land plants. Am J Bot 98:352–369PubMedCrossRefGoogle Scholar
  111. Si S, Mandal TK (2007) Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chem A Eur J 13:3160–3168CrossRefGoogle Scholar
  112. Singh AK, Talat M, Singh DP, Srivastava ON (2010) Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J Nanopart Res 12:1667–1675CrossRefGoogle Scholar
  113. Smith GM (2014) Cryptogamic botany, bryophytes and pteridophytes, vol 1. McGraw-Hill, New York Record No. 20057004954Google Scholar
  114. Srivastava AA, Kulkarni AP, Harpale PM, Zunjarrao RS (2011) Plant mediated synthesis of silver nanoparticles using a bryophyte: Fissidens minutus and its anti-microbial activity. Int J Eng Sci Technol 3:8342–8347Google Scholar
  115. Suganya S, Irudayaraj V, Johnson M (2011) Pharmacognostical studies on an endemic Spike-Moss Selaginella tenera (Hook. and Grev.) Spring from the Western Ghats, South India. J Chem Pharm Res 3:721–731Google Scholar
  116. Sukirthaa R, Priyankaa KM, Antonya JJ, Kamalakkannana S, Thangamb R, Gunasekaranb P (2012) Cytotoxic effect of green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem 47:273–279CrossRefGoogle Scholar
  117. Sukumaran K, Kuttan R (1991) Screening of 11 ferns for cytotoxic and antitumor potential with special reference to pityrogramma calomelanos. J Ethnopharmacol 34:93–96PubMedCrossRefGoogle Scholar
  118. Suman PR, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191Google Scholar
  119. Suman TY, Rajasree SRR, Kanchana A, Elizabeth SB (2013) Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B Biointerfaces 106:74–78PubMedCrossRefGoogle Scholar
  120. Suresh P, Gunasekar PH, Kokila D, Prabhu D, Dinesh D, Ravichandran N, Ramesh B, Koodalingam A, Siva GV (2014) Green synthesis of silver nanoparticles using Delphinium denundatum root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochim Acta A Mol Biomol Spectrosc 127:61–66PubMedCrossRefGoogle Scholar
  121. Şuţan NA, Radu IF, Fierăscub C, Ştefania D, Liliana M, Soarea C (2016) Comparative analytical characterization and in vitro-cytogenotoxic activity evaluation of Asplenium scolopendrium L. leaves and rhizome extracts prior to and after Ag nanoparticles phytosynthesis. Ind Crop Prod 83:379–338CrossRefGoogle Scholar
  122. Sheny DS, Mathew J, Philip D (2011) Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim Acta A Mol Biomol Spectrosc 79:254–262CrossRefGoogle Scholar
  123. Tamuly C, Hazarika M, Bordoloi M, Bhattacharyya PK, Kar R (2014) Biosynthesis of Ag nanoparticles using pedicellamide and its photocatalytic activity: an eco-friendly approach. Spectrochim. Acta A Mol Biomol Spectrosc 132:687–691PubMedCrossRefGoogle Scholar
  124. Tan YN, Lee JY, Wang DIC (2010) Uncovering the design rules for peptide synthesis of metal nanoparticles. J Am Chem Soc 132:5677–5686PubMedCrossRefGoogle Scholar
  125. Taton TA (2002) Nanostructures as tailored biological probes. Trends Biotechnol 20:277–279PubMedCrossRefGoogle Scholar
  126. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262PubMedCrossRefGoogle Scholar
  127. Tyler G (1990) Bryophytes and heavy metals: a literature review. Bot J Linn Soc 104:231–253CrossRefGoogle Scholar
  128. Vats S, Tiwari R, Alam A, Behera KK, Pareek R (2012) Evaluation of phytochemicals, antioxidant and antimicrobial activity of in vitro culture of Vigna unguiculata L. Walp Res 4:70–74Google Scholar
  129. Verma DK, Syed HH, Banika RM (2016) Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. J Photochem Photobiol B Biol 155:51–59CrossRefGoogle Scholar
  130. Vimala A, Sathish SS, Thamizharasi T, Palani R, Vijayakanth P, Kavitha R (2017) Moss (bryophyte) mediated synthesis and characterization of silver nanoparticles from Campylopus flexuosus (Hedw.) bird. J Pharm Sci Res 9:292–297Google Scholar
  131. Wood AJ, Oliver MJ, Cove DJ (2000) Bryophytes as model systems. The Bryologist 103:128-133CrossRefGoogle Scholar
  132. Wrotniak DW, Gaikwad S, Laskowski D, Dahm H, Niedojadło J (2014) Novel approach towards synthesis of silver nanoparticles from MyxococcusVirescens and their lethality on pathogenic bacterial cells. Austin J Biotechnol Bioeng 1:7 pagesGoogle Scholar
  133. Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275PubMedCrossRefGoogle Scholar
  134. You C, Han C, Wang X, Zheng Y, Li Q (2012) The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39:9193–9201PubMedCrossRefGoogle Scholar
  135. Yu H, Chen M, Rice PM, Wang SX, White RL, Sun S (2005) Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett 5:379–382PubMedCrossRefGoogle Scholar
  136. Zhang W, Yong C, Kelsey RD, Lena QM (2004) Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern). Environ Poll 131:337–345CrossRefGoogle Scholar
  137. Zhou Y, Lin W, Huang J, Wang W, Lin YGL, Li Q, Lin LDM (2010) Biosynthesis of gold nanoparticles by foliar broths: roles of biocompounds and other attributes of the extracts. Nanoscale Res Lett 5:1351–1359PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sabiha Zamani
    • 1
  • Babita Jha
    • 1
  • Anal K. Jha
    • 1
  • Kamal Prasad
    • 2
  1. 1.Aryabhatta Centre for Nanoscience and NanotechnologyAryabhatta Knowledge UniversityPatnaIndia
  2. 2.Department of PhysicsTilka Manjhi Bhagalpur UniversityBhagalpurIndia

Personalised recommendations