Advertisement

Synthesis and Characterization of Selenium Nanoparticles Using Natural Resources and Its Applications

  • S. Rajeshkumar
  • P. Veena
  • R. V. Santhiyaa
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Selenium is the important trace element required in fewer amounts for the human body for its function. Selenium nanoparticles are synthesized by several methods using the biological method as well as both chemical and physical method. Many papers have reported the synthesis of selenium nanoparticles using biological sources such as bacteria, fungi, yeasts, and plants. Also, chemicals have used as reducing agent for the conversion of sodium selenite into selenium nanoparticles. Synthesized selenium nanoparticles are characterized using TEM, SEM, FTIR, XRD, and UV-vis. In our book chapter, we have reviewed about the green synthesis of the selenium nanoparticles such as bacteria, fungi, plants (leaves, seeds, and flower), and yeast. The application of the prepared selenium nanoparticles is also explained in this book chapter.

Keywords

Selenium nanoparticles Glutathione Sodium alginate and carboxymethyl cellulose Bacteria Fungi Protozoa Antibacterial Drug delivery Dye degradation Inhibits biofilm Anti-leishmaniasis 

References

  1. Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7:753–763. https://doi.org/10.1517/17425241003777010 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bartůněk V, Junková J, Šuman J et al (2015) Preparation of amorphous antimicrobial selenium nanoparticles stabilized by odor suppressing surfactant polysorbate 20. Mater Lett 152:207–209. https://doi.org/10.1016/j.matlet.2015.03.092 CrossRefGoogle Scholar
  4. Bhaduri GA, Little R, Khomane RB, Lokhande SU (2013) Green synthesis of silver nanoparticles using sunlight. J Photochem Photobiol A Chem 258:1–9. https://doi.org/10.1016/j.jphotochem.2013.02.015 CrossRefGoogle Scholar
  5. Chen H, Yoo JB, Liu Y, Zhao G (2011) Green synthesis and characterization of Se nanoparticles and nanorods. Electron Mater Lett 7:333–336. https://doi.org/10.1007/s13391-011-0420-4 CrossRefGoogle Scholar
  6. Cui YH, Li LL, Zhou NQ et al (2016) In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. Enzyme Microb Technol 95:185–191. https://doi.org/10.1016/j.enzmictec.2016.08.017 CrossRefPubMedGoogle Scholar
  7. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269. https://doi.org/10.1021/cr050943k CrossRefPubMedGoogle Scholar
  8. Deepa B, Ganesan V (2015) Bioinspiredsynthesis of selenium nanoparticles using flowers of Catharanthus roseus(L.) G.Don.and Peltophorum pterocarpum(DC.)Backer ex Heyne – a comparison. Int J ChemTech Res 7:725–733Google Scholar
  9. Dizaj SM, Lotfipour F, Barzegar-Jalali M et al (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284. https://doi.org/10.1016/j.msec.2014.08.031 CrossRefGoogle Scholar
  10. Dutta RK, Nenavathu BP, Talukdar S (2014) Anomalous antibacterial activity and dye degradation by selenium doped ZnO nanoparticles. Colloids Surf B Biointerfaces 114:218–224. https://doi.org/10.1016/j.colsurfb.2013.10.007 CrossRefPubMedGoogle Scholar
  11. Elahian F, Reiisi S, Shahidi A, Mirzaei SA (2017) High-throughput bioaccumulation, biotransformation, and production of silver and selenium nanoparticles using genetically engineered Pichia pastoris. Nanomed Nanotechnol Biol Med 13:853–861. https://doi.org/10.1016/j.nano.2016.10.009 CrossRefGoogle Scholar
  12. Ezhuthupurakkal PB, Polaki LR, Suyavaran A et al (2017) Selenium nanoparticles synthesized in aqueous extract of Allium sativum perturbs the structural integrity of Calf thymus DNA through intercalation and groove binding. Mater Sci Eng C 74:597–608. https://doi.org/10.1016/j.msec.2017.02.003 CrossRefGoogle Scholar
  13. Fernandes AP, Gandin V (2015) Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta 1850:1642–1660. https://doi.org/10.1016/j.bbagen.2014.10.008 CrossRefPubMedGoogle Scholar
  14. Fernández-Llamosas H, Castro L, Blázquez ML et al (2016) Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB. Microb Cell Fact 15:1–10. https://doi.org/10.1186/s12934-016-0510-y CrossRefGoogle Scholar
  15. Fernández-Llamosas H, Castro L, Blázquez ML et al (2017) Speeding up bioproduction of selenium nanoparticles by using Vibrio natriegens as microbial factory. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-16252-1 CrossRefGoogle Scholar
  16. Fesharaki PJ, Nazari P, Shakibaie M et al (2010) Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol 41:461–466. https://doi.org/10.1590/S1517-83822010000200028 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ganesan V (2015) Biogenic synthesis and characterization of selenium nanoparticles using the flower of Bougainvillea spectabilis Willd. Int J Sci Res 4:690–695Google Scholar
  18. Gautam PK, Kumar S, Tomar MS et al (2017) Selenium nanoparticles induce suppressed function of tumor associated macrophages and inhibit Dalton’s lymphoma proliferation. Biochem Biophys Rep 12:172–184. https://doi.org/10.1016/j.bbrep.2017.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gnanajobitha G, Paulkumar K, Vanaja M et al (2013) Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J Nanostruct Chem 3:67CrossRefGoogle Scholar
  20. Hamza F, Vaidya A, Apte M et al (2017) Selenium nanoparticle-enriched biomass of Yarrowia lipolytica enhances growth and survival of Artemia salina. Enzyme Microb Technol 106:48–54. https://doi.org/10.1016/j.enzmictec.2017.07.002 CrossRefPubMedGoogle Scholar
  21. Huang Y, He L, Liu W et al (2013) Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials 34:7106–7116. https://doi.org/10.1016/j.biomaterials.2013.04.067 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Huang X, Chen X, Chen Q et al (2016) Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomater 30:397–407. https://doi.org/10.1016/j.actbio.2015.10.041 CrossRefPubMedGoogle Scholar
  23. Husen A, Siddiqi KS (2014) Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol 12:1–10. https://doi.org/10.1186/s12951-014-0028-6 CrossRefGoogle Scholar
  24. Jalalian SH, Ramezani M, Abnous K, Taghdisi SM (2018) Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Lett 416:87–93. https://doi.org/10.1016/j.canlet.2017.12.023 CrossRefPubMedGoogle Scholar
  25. Jia X, Liu Q, Zou S et al (2015) Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity. Carbohydr Polym 117:434–442. https://doi.org/10.1016/j.carbpol.2014.09.088 CrossRefPubMedGoogle Scholar
  26. Kalishwaralal K, Jeyabharathi S, Sundar K, Muthukumaran A (2015) Sodium selenite/selenium nanoparticles (SeNPs) protect cardiomyoblasts and zebrafish embryos against ethanol induced oxidative stress. J Trace Elem Med Biol 32:135–144. https://doi.org/10.1016/j.jtemb.2015.06.010 CrossRefPubMedGoogle Scholar
  27. Kamnev AA, Mamchenkova PV, Dyatlova YA, Tugarova AV (2017) FTIR spectroscopic studies of selenite reduction by cells of the rhizobacterium Azospirillum brasilense Sp7 and the formation of selenium nanoparticles. J Mol Struct 1140:106–112. https://doi.org/10.1016/j.molstruc.2016.12.003 CrossRefGoogle Scholar
  28. Khoei NS, Lampis S, Zonaro E et al (2017) Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. N Biotechnol 34:1–11. https://doi.org/10.1016/j.nbt.2016.10.002 CrossRefPubMedGoogle Scholar
  29. Kokila K, Elavarasan N, Sujatha V (2017) Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications. New J Chem. https://doi.org/10.1039/C7NJ01124E CrossRefGoogle Scholar
  30. Kora AJ, Rastogi L (2016) Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: an approach for conversion of selenite. J Environ Manage 181:231–236. https://doi.org/10.1016/j.jenvman.2016.06.029 CrossRefPubMedGoogle Scholar
  31. Kumar N, Krishnani KK, Gupta SK, Singh NP (2017) Selenium nanoparticles enhanced thermal tolerance and maintain cellular stress protection of Pangasius hypophthalmus reared under lead and high temperature. Respir Physiol Neurobiol 246:107–116. https://doi.org/10.1016/j.resp.2017.09.006 CrossRefPubMedGoogle Scholar
  32. Lampis S, Zonaro E, Bertolini C et al (2017) Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITE02: novel clues on the route to bacterial biogenesis of selenium nanoparticles. J Hazard Mater 324:3–14. https://doi.org/10.1016/j.jhazmat.2016.02.035 CrossRefPubMedGoogle Scholar
  33. Lengke MF, Sanpawanitchakit C, Southam G (2011) Biosynthesis of gold nanoparticles: a review. Met Nanoparticles Microbiol:37–74. https://doi.org/10.1007/978-3-642-18312-6_3 CrossRefGoogle Scholar
  34. Luesakul U, Komenek S, Puthong S, Muangsin N (2016) Shape-controlled synthesis of cubic-like selenium nanoparticles via the self-assembly method. Carbohydr Polym 153:435–444. https://doi.org/10.1016/j.carbpol.2016.08.004 CrossRefPubMedGoogle Scholar
  35. Malarkodi C, Rajeshkumar S, Paulkumar K et al (2013a) Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria Serratia nematodiphila. Adv Nano Res 1:83–91. https://doi.org/10.12989/anr.2013.1.2.083 CrossRefGoogle Scholar
  36. Malarkodi C, Rajeshkumar S, Paulkumar K et al (2013b) Bactericidal activity of bio mediated silver nanoparticles synthesized by Serratia nematodiphila. Drug Invent Today 5:119–125. https://doi.org/10.1016/j.dit.2013.05.005 CrossRefGoogle Scholar
  37. Mandal D, Bolander ME, Mukhopadhyay D et al (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492. https://doi.org/10.1007/s00253-005-0179-3 CrossRefPubMedGoogle Scholar
  38. Mesbahi-Nowrouzi M, Mollania N (2018) Purification of selenate reductase from Alcaligenes sp. CKCr-6A with the ability to biosynthesis of selenium nanoparticle: enzymatic behavior study in imidazolium based ionic liquids and organic solvent. J Mol Liq 249:1254–1262. https://doi.org/10.1016/j.molliq.2017.10.117 CrossRefGoogle Scholar
  39. Moses V (2014) Biological synthesis of copper nanoparticles and its impact - a review. Int J Pharm Sci Invent 3:2319–6718Google Scholar
  40. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13. https://doi.org/10.1016/j.cis.2010.02.001 CrossRefPubMedGoogle Scholar
  41. Palomo-Siguero M, Gutiérrez AM, Pérez-Conde C, Madrid Y (2016) Effect of selenite and selenium nanoparticles on lactic bacteria: a multi-analytical study. Microchem J 126:488–495. https://doi.org/10.1016/j.microc.2016.01.010 CrossRefGoogle Scholar
  42. Panahi-Kalamuei M, Salavati-Niasari M, Hosseinpour-Mashkani SM (2014) Facile microwave synthesis, characterization, and solar cell application of selenium nanoparticles. J Alloys Compd 617:627–632. https://doi.org/10.1016/j.jallcom.2014.07.174 CrossRefGoogle Scholar
  43. Paulkumar K, Rajeshkumar S, Gnanajobitha G et al (2013) Biosynthesis of silver chloride nanoparticles using Bacillus subtilis MTCC 3053 and assessment of its antifungal activity. ISRN Nanomater 2013:1–8. https://doi.org/10.1155/2013/317963 CrossRefGoogle Scholar
  44. Paulkumar K, Gnanajobitha G, Vanaja M et al (2014) Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. ScientificWorldJournal 2014:829894. https://doi.org/10.1155/2014/829894 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles Article ID 963961. https://doi.org/10.1155/2014/963961 CrossRefGoogle Scholar
  46. Prasad KS, Patel H, Patel T et al (2013) Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids Surf B Biointerfaces 103:261–266. https://doi.org/10.1016/j.colsurfb.2012.10.029 CrossRefGoogle Scholar
  47. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  48. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363 CrossRefGoogle Scholar
  49. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Presentato A, Piacenza E, Anikovskiy M et al (2018) Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. N Biotechnol 41:1–8. https://doi.org/10.1016/j.nbt.2017.11.002 CrossRefPubMedGoogle Scholar
  51. Rajeshkumar S (2016a) Green synthesis of different sized antimicrobial silver nanoparticles using different parts of plants – a review. Int J ChemTech Res 9:197–208Google Scholar
  52. Rajeshkumar S (2016b) Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol 14:195–202. https://doi.org/10.1016/j.jgeb.2016.05.007 CrossRefGoogle Scholar
  53. Rajeshkumar S, Bharath LV (2017) Mechanism of plant-mediated synthesis of silver nanoparticles – a review on biomolecules involved, characterisation and antibacterial activity. Chem Biol Interact 273:219–227. https://doi.org/10.1016/j.cbi.2017.06.019 CrossRefPubMedGoogle Scholar
  54. Rajeshkumar S, Kannan C, Annadurai G (2012) Green synthesis of silver nanoparticles using marine brown Algae turbinaria conoides and its antibacterial activity. Int J Pharm Bio SciGoogle Scholar
  55. Rajeshkumar S, Malarkodi C, Gnanajobitha G et al (2013a) Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostruct Chem 3:44. https://doi.org/10.1186/2193-8865-3-44 CrossRefGoogle Scholar
  56. Rajeshkumar S, Malarkodi C, Vanaja M et al (2013b) Antibacterial activity of algae mediated synthesis of gold nanoparticles from turbinaria conoides. Der Pharma Chem 5:224–229Google Scholar
  57. Rajeshkumar S, Malarkodi C, Paulkumar K et al (2014a) Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Metal 2014:1–8. https://doi.org/10.1155/2014/692643 CrossRefGoogle Scholar
  58. Rajeshkumar S, Ponnanikajamideen M, Malarkodi C et al (2014b) Microbe-mediated synthesis of antimicrobial semiconductor nanoparticles by marine bacteria. J Nanostruct Chem 4:96. https://doi.org/10.1007/s40097-014-0096-z CrossRefGoogle Scholar
  59. Ramamurthy CH, Sampath KS, Arunkumar P et al (2013) Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng 36:1131–1139. https://doi.org/10.1007/s00449-012-0867-1 CrossRefGoogle Scholar
  60. Ramya S, Shanmugasundaram T, Balagurunathan R (2015) Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J Trace Elem Med Biol 32:30–39. https://doi.org/10.1016/j.jtemb.2015.05.005 CrossRefPubMedGoogle Scholar
  61. Sangeetha J, Gayathri S, Rajeshkumar S (2017a) Antimicrobial assessment of marine brown algae Sargassum whitti against UTI pathogens and its phytochemical analysis. Res. J Pharm Technol. https://doi.org/10.5958/0974-360X.2017.00334.1 CrossRefGoogle Scholar
  62. Sangeetha J, Gayathri S, Rajeshkumar S (2017b) Antimicrobial assessment of marine brown algae Sargassum whitti against UTI pathogens and its phytochemical analysis. Res J Pharm Technol 10:6–11Google Scholar
  63. Satgurunathan T, Bhavan PS, Komathi S (2017) Green synthesis of selenium nanoparticles from sodium selenite using garlic extract and its enrichment on Artemia nauplii to feed the freshwater prawn Macrobrachium rosenbergii post-larvae. Res J Chem Environ 21:1–12Google Scholar
  64. Sharma D, Kanchi S, Bisetty K (2015) Biogenic synthesis of nanoparticles: a review. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.11.002
  65. Shoeibi S, Mashreghi M (2017) Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J Trace Elem Med Biol 39:135–139. https://doi.org/10.1016/j.jtemb.2016.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Soflaei S, Dalimi A, Abdoli A et al (2014) Anti-leishmanial activities of selenium nanoparticles and selenium dioxide on Leishmania infantum. Comp Clin Pathol 23:15–20. https://doi.org/10.1007/s00580-012-1561-z CrossRefGoogle Scholar
  67. Soumya M, Venkat Kumar S, Rajeshkumar S (2017) A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. 1643:1–12. https://doi.org/10.1016/j.reffit.2017.08.002 Article In PressCrossRefGoogle Scholar
  68. Sonkusre P, Singh Cameotra S (2015) Biogenic selenium nanoparticles inhibit Staphylococcus aureus adherence on different surfaces. Colloids Surf B Biointerfaces 136:1051–1057. https://doi.org/10.1016/j.colsurfb.2015.10.052 CrossRefPubMedGoogle Scholar
  69. Srivastava P, Kowshik M (2016) Anti-neoplastic selenium nanoparticles from Idiomarina sp. PR58-8. Enzyme Microb Technol 95:192–200. https://doi.org/10.1016/j.enzmictec.2016.08.002 CrossRefPubMedGoogle Scholar
  70. Srivastava N, Mukhopadhyay M (2013) Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol 244:26–29. https://doi.org/10.1016/j.powtec.2013.03.050 CrossRefGoogle Scholar
  71. Srivastava N, Mukhopadhyay M (2015a) Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess Biosyst Eng 38:1723–1730. https://doi.org/10.1007/s00449-015-1413-8 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Srivastava N, Mukhopadhyay M (2015b) Biosynthesis and structural characterization of selenium nanoparticles using Gliocladium roseum. J Clust Sci 26:1473–1482. https://doi.org/10.1007/s10876-014-0833-y CrossRefGoogle Scholar
  73. Tareq FK, Fayzunnesa M, Kabir MS, Nuzat M (2018) Mechanism of bio molecule stabilized selenium nanoparticles against oxidation process and Clostridium Botulinum. Microb Pathog 115:68–73. https://doi.org/10.1016/j.micpath.2017.12.042 CrossRefPubMedGoogle Scholar
  74. Tayebee R, Silva PBM, Oliveira KA, Coltro WKT (2005) Short Report. Tetrahedron 16:108–111. https://doi.org/10.7196/AJHPE.2016.v8i1.523 CrossRefGoogle Scholar
  75. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262. https://doi.org/10.1016/j.nano.2009.07.002 CrossRefGoogle Scholar
  76. Tugarova AV, Kamnev AA (2017) Proteins in microbial synthesis of selenium nanoparticles. Talanta 174:539–547. https://doi.org/10.1016/j.talanta.2017.06.013 CrossRefPubMedGoogle Scholar
  77. Tugarova AV, Mamchenkova PV, Dyatlova YA, Kamnev AA (2018) FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum. Spectrochim Acta A Mol Biomol Spectrosc 192:458–463. https://doi.org/10.1016/j.saa.2017.11.050 CrossRefPubMedGoogle Scholar
  78. Vanaja M, Annadurai G (2012) Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci. https://doi.org/10.1007/s13204-012-0121-9 CrossRefGoogle Scholar
  79. Vanaja M, Rajeshkumar S, Paulkumar K et al (2013) Kinetic study on green synthesis of silver nanoparticles using Coleus aromaticus leaf extract. Pelagia Res Libr 4:50–55Google Scholar
  80. Vanaja M, Paulkumar K, Gnanajobitha G et al (2014) Herbal plant synthesis of antibacterial silver nanoparticles by Solanum trilobatum and its characterization. Int J Metal 2014:1–8. https://doi.org/10.1155/2014/692461 CrossRefGoogle Scholar
  81. Xiao Y, Huang Q, Zheng Z et al (2017) Construction of a Cordyceps sinensis exopolysaccharide-conjugated selenium nanoparticles and enhancement of their antioxidant activities. Int J Biol Macromol 99:483–491. https://doi.org/10.1016/j.ijbiomac.2017.03.016 CrossRefPubMedGoogle Scholar
  82. Yu B, Liu T, Du Y et al (2016) X-ray-responsive selenium nanoparticles for enhanced cancer chemo-radiotherapy. Colloids Surf B Biointerfaces 139:180–189. https://doi.org/10.1016/j.colsurfb.2015.11.063 CrossRefPubMedGoogle Scholar
  83. Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494. https://doi.org/10.1016/j.chemosphere.2010.10.023 CrossRefPubMedGoogle Scholar
  84. Zhang J, Teng Z, Yuan Y et al (2017) Development, physicochemical characterization and cytotoxicity of selenium nanoparticles stabilized by beta-lactoglobulin. Int J Biol Macromol 107:1406–1413. https://doi.org/10.1016/j.ijbiomac.2017.09.117 CrossRefPubMedGoogle Scholar
  85. Zhu C, Zhang S, Song C et al (2017) Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF-ΚB mediated hyper inflammation. J Nanobiotechnol 15:1–15. https://doi.org/10.1186/s12951-017-0252-y CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • S. Rajeshkumar
    • 1
  • P. Veena
    • 2
  • R. V. Santhiyaa
    • 2
  1. 1.Department of PharmacologySaveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical SciencesChennaiIndia
  2. 2.Nanotherapy LaboratorySchool of Bio-Sciences and Technology, Vellore Institute of TechnologyVelloreIndia

Personalised recommendations