Advertisement

Hydrothermal Synthesis of Hybrid Nanoparticles for Future Directions of Renewal Energy Applications

  • G. P. Singh
  • Neha Singh
  • Ratan Kumar Dey
  • Kamal Prasad
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

This chapter discusses the current development and future scope of the hydrothermal process for the synthesis of a plethora of technology grade materials for advance technological applications. It is used to derive the materials directly from an aqueous solution by controlling the thermodynamic variables such as temperature, pressure, and composition. Herein, the importance is not only given to the conventional hydrothermal process, rather on some of its hybrid techniques such as microwave-assisted, sol gel-assisted, ultrasound-assisted, electrochemical-assisted, optical radiation-assisted, and hot press-assisted hydrothermal methods. These hybrid techniques provide new pathways and opportunities for the synthesis of various kinds of advance materials with novel properties for advanced applications such as in energy production, targeted drug delivery, bio-imaging, and photo-catalyst. In this chapter, stress has been given to highlight the use of different hydrothermal techniques for the synthesis of various forms of the materials in different structures for the use of solar energy harvesting from water to hydrogen production and the assembly of dye-sensitized solar cells for direct conversion of solar to energy application through designing of photovoltaic cell.

Keywords

Hydrothermal, Hybrid nanoparticles, Renewal energy, Metals nanoparticles, Metal oxide nanoparticles, Carbon nanomaterials, Carbon nanotubes 

References

  1. Adschiri T, Kanaszawa K, Arai K (1992a) Rapid and continuous hydrothermal synthesis of boehmite particles in subcritical and supercritical water. J Am Ceram Soc 75:2615–2618CrossRefGoogle Scholar
  2. Adschiri T, Kanaszawa K, Arai K (1992b) Rapid and vontinuous hydrothermal crystallization of metal oxide particles in supercritical water. J Am Ceram Soc 75:1019–1033CrossRefGoogle Scholar
  3. Adschiri T, Hakuta Y, Arai K (2000) Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind Eng Chem Res 39:4901–4907CrossRefGoogle Scholar
  4. Adschiri T, Hakuta Y, Sue K, Arai K (2001) Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions. J Nanopart Res 3:227–235CrossRefGoogle Scholar
  5. Agegnehu AK, Pan CJ, Tsai MC, Rick J, Su WN, Lee JF, Hwang BJ (2016) Visible light responsive noble metal-free nanocomposite of V-doped TiO2 nanorod with highly reduced graphene oxide for enhanced solar H2 production. Int J Hydrog Energy 41:6752–6762CrossRefGoogle Scholar
  6. Ajayan PM, Ebbesen TW (1997) Nanometre-size tubes of carbon. Rep Prog Phys 60:1025–1062CrossRefGoogle Scholar
  7. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–267CrossRefGoogle Scholar
  8. Basavalingu B, Byrappa K, Yoshimura M (2001a) Advances in high pressure science and technology. Tata McGraw Publishers, 417 ppGoogle Scholar
  9. Basavalingu B, Jose M, Moreno C, Byrappa K, Gogotsi YG (2001b) Decomposition of silicon carbide in the presence of organic compounds under hydrothermal conditions. Carbon 39:1763–1766CrossRefGoogle Scholar
  10. Basavalingu B, Byrappa K, Madhusudan P, Dayananda AS, Yoshimura M (2006) Hydrothermal synthesis and characterization of micro to nano sized carbon particles. J Mater Sci 41:1465–1469CrossRefGoogle Scholar
  11. Basavalingu B, Byrappa K, Madhusudan P, Yoshimura M (2007) Hydrothermal synthesis of nanosized crystals of diamond under sub-natural conditions. J Geo Soc India 69:665Google Scholar
  12. Blackburn JM, Long DP, Cabanas A, Watkins JJ (2001) Deposition of conformal copper and nickel films from supercritical carbon dioxide. Science 294:141–145CrossRefGoogle Scholar
  13. Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166CrossRefGoogle Scholar
  14. Chang JY, Ghule A, Chang JJ, Tzing SH, Ling YC (2002) Opening and thinning of multiwall carbon nanotubes in supercritical water. Chem Phys Lett 363:583–590CrossRefGoogle Scholar
  15. Che G, Lakshmi BB, Fisher IR, Martin CR (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349CrossRefGoogle Scholar
  16. Chen Y, Zhao S, Wang X, Peng Q, Lin R, Wang Y, Shen R, Cao X, Zhang L, Zhou G (2016) Synergetic integration of Cu1.94S-ZnxCd1-xS heteronanorods for enhanced visible-light-driven photocatalytic hydrogen production. J Am Chem Soc 138:4286–4289CrossRefGoogle Scholar
  17. Chen G, Zhang X, Guan L, Zhang H, Xie X, Chen S, Tao J (2018) Phase transition promoted hydrogen evolution performance of MoS2/VO2 hybrids. J Phys Chem C 122:2618. https://doi.org/10.1021/acs.jpcc.7b12040 CrossRefGoogle Scholar
  18. Dai GH, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:147–150CrossRefGoogle Scholar
  19. Das P, Roy A, Devi PS (2016) Zn2SnO4 as an alternative photoanode for dye sensitized solar cells: current status and future scope. Trans Ind Ceram Soc 75:1–8CrossRefGoogle Scholar
  20. Das PP, Roy A, Agarkar S, Devi PS (2018a) Hydrothermally synthesized fluorescent Zn2SnO4 nanoparticles for dye sensitized solar cells. Dyes Pigments 154:303–313CrossRefGoogle Scholar
  21. Das P, Roy A, Devi PS (2018b) Hydrothermally synthesized fluorescent Zn2SnO4 nanoparticles for dye sensitized solar cells. Dyes Pigments 154:11–22CrossRefGoogle Scholar
  22. DeVries RC, Roy R, Somiya S, Yamada S (1994) A review of liquid phase systems pertinent to diamond synthesis. Trans Mater Res Soc Japan 14B:641Google Scholar
  23. Dontsova D, Fettkenhauer C, Papaefthimiou V, Schmidt J, Antonietti M (2015) 1,2,4-Triazole-based approach to noble-metal-free visible-light driven water splitting over carbon nitrides. Chem Mater 28:772–778CrossRefGoogle Scholar
  24. Dunlap-Shohl WA, Daunis TB, Wang X, Wang J, Zhang B, Barrera D, Yan Y, Hsu JWP, Mitzi DB (2018) Room-temperature fabrication of a delafossite CuCrO2 hole transport layer for perovskite solar cells. J Mater Chem A 6:469–477CrossRefGoogle Scholar
  25. Eric Drexler K (1986) Engines of Creation: The Coming Era of Nanotechnology, Doubleday Publisher, United StatesGoogle Scholar
  26. Feynman RP (1959) There’s plenty of room at the bottom. Annual meeting of the American Physical SocietyGoogle Scholar
  27. Forster S, Antonietti M (1998) Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv Mater 10:195–217CrossRefGoogle Scholar
  28. Fox MA, Dulay M (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357CrossRefGoogle Scholar
  29. Frank S, Poncharal P, Wang ZI, De Heer WA (1998) Carbon nanotube quantum resistors. Science 280:1744–1746CrossRefGoogle Scholar
  30. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  31. Fujito H, Kunioku H, Kato D, Suzuki H, Higashi M, Kageyama H, Abe R (2016) Layered perovskite oxychloride Bi4NbO8Cl: a stable visible light responsive photocatalyst for water splitting. J Am Chem Soc 138:2082–2085CrossRefGoogle Scholar
  32. Gebremariam TT, Chen F, Wang Q, Wang J, Liu Y, Wang X, Qaseem A (2018) Bimetallic Mn-Co oxide nanoparticles anchored on carbon nanofibers wrapped in nitrogen doped carbon for application in Zn-air batteries and supercapacitors. ACS Appl Energy Mater 1:1612. https://doi.org/10.1021/acsaem.8b00067 CrossRefGoogle Scholar
  33. Gersten B (2003) In: Byrappa K, Ohachi T (eds) Handbook of crystal growth technology. William Andrew Publications, New YorkGoogle Scholar
  34. Gogotsi YG, Nickel KG, Kofstad PJ (1995) Hydrothermal synthesis of diamond from diamond-seeded β-SiC powder. Mater Chem 5:2313–2314CrossRefGoogle Scholar
  35. Gogotsi YG, Kofstad P, Yoshmura M, Nickel KG (1996) Formation of sp3-bonded carbon upon hydrothermal treatment of SiC. Diam Relat Mater 5:151CrossRefGoogle Scholar
  36. Goldberger J, He R, Zhang Y, Lee S, Yan H, Choi HJ, Yang P (2003) Single-crystal gallium nitride nanotubes. Nature 422:599–602CrossRefGoogle Scholar
  37. Gujral SS, Simonov AN, Higashi M, Fang XY, Abe R, Spiccia L (2016) Highly dispersed cobalt oxide on TaON as efficient photoanodes for long-term solar water splitting. ACS Catal 6:3404–3417CrossRefGoogle Scholar
  38. Guo Z, Sadler PJ, Tsang SC (1998) Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv Mater 10:701–703CrossRefGoogle Scholar
  39. Hakuta Y, Adschiri T, Suzuki T, Chida T, Seino K, Arai K (1998a) Flow method for rapidly producing barium hexaferrite particles in supercritical water. J Am Ceram Soc 81:2461–2464CrossRefGoogle Scholar
  40. Hakuta Y, Onai S, Terayama H, Adschiri T, Aria K (1998b) Production of ultra-fine ceria particles by hydrothermal synthesis under supercritical conditions. J Mater Sci Lett 17:1211–1213CrossRefGoogle Scholar
  41. Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129CrossRefGoogle Scholar
  42. Heggerty S (1986) Diamond genesis in a multiply-constrained model. Nature 320:34CrossRefGoogle Scholar
  43. Hoffmann MR, Martin ST, Choi WY, Bahnmann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  44. Ijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  45. Jiang D, Sun Z, Jia H, Lu D, Du P (2016) A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. J Mater Chem A Mater Energy Sustain 4:675–683CrossRefGoogle Scholar
  46. Kameo A, Yoshimura T, Esumi K (2015) Preparation of noble metal nanoparticles in supercritical carbon dioxide. Colloid Surf A Physicochem Eng Aspect 215:181–189CrossRefGoogle Scholar
  47. Katayama K, Yao H, Nakanishi F, Doi H, Saegusa A, Okuda N, Yamala T (1998) Lasing characteristics of low threshold ZnSe-based blue/green laser diodes grown on conductive ZnSe substrates. Appl Phys Lett 73:102CrossRefGoogle Scholar
  48. Kandiel TA, Takanabe K (2016) Solvent-induced deposition of Cu-Ga-In-S nanocrystals onto a titanium dioxide surface for visible-light-driven photocatalytic hydrogen production. Appl Catal B Environ 184:264–269CrossRefGoogle Scholar
  49. Khaselev O, Turner JA (1998) A monolithic photovoltaic-photo-electrochemical device for hydrogen production via water splitting. Science 280:425–427CrossRefGoogle Scholar
  50. Lalena JN, Cleary DA, Carpenter E, Dean NF (2008) Nanomaterials synthesis. In: Lalena N, Cleary DA, Carpenter E, Dean NF (eds) Inorganic materials synthesis and fabrication. Wiley, HobokenCrossRefGoogle Scholar
  51. Lee DC, Mikulec FV, Korgel BA (2004) Carbon nanotube synthesis in supercritical toluene. J Am Chem Soc 126:4951–4957CrossRefGoogle Scholar
  52. Lencka MM, Riman RE (2003) In: Byrappa K, Ohachi T (eds) Handbook of crystal growth technology. William Andrew Publications, New YorkGoogle Scholar
  53. Li L, Yan J, Wang T, Zhao ZJ, Zhang J, Gong J, Guan N (2015a) Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat Commun 6:5881–5810CrossRefGoogle Scholar
  54. Li H, Yu K, Lei X, Guo B, Chao L, Hao F, Zhu Z (2015b) Synthesis of MoS2@CuO heterogeneous structure with improved photocatalysis performance and H2O adsorption analysis. Dalton Trans 44:10438–10447CrossRefGoogle Scholar
  55. Liu W, Zhong W, Wu X, Tang N, Du Y (2005) Hydrothermal microemulsion synthesis of cobalt nanorods and self-assembly into square-shaped nanostructures. J Cryst Growth 284:446–452CrossRefGoogle Scholar
  56. McLeod MC, Gale WF, Roberts CB (2004) Metallic nanoparticle production utilizing a supercritical carbon dioxide flow process. Langmuir 20:7078–7082CrossRefGoogle Scholar
  57. Motiei M, Hacohen YR, Calderon-Moreno JM, Gedanken A (2001) Preparing carbon nanotubes and nested fullerenes from supercritical CO2 by a chemical reaction. J Am Chem Soc 123:8624–8625CrossRefGoogle Scholar
  58. Melto CE, Giardini AA (1974) The composition and significance of gas released from natural diamonds from Africa and Brazil. Am Mineral 59:775Google Scholar
  59. Navon O (1991) High internal pressures in diamond fluid inclusions determined by infrared absorption. Nature 353:746–748CrossRefGoogle Scholar
  60. Ortiz-Landeros J, Gómez-Yáñez C, López-Juárez R, Dávalos-Velasco I, Pfeiffer H (2012) Synthesis of advanced ceramics by hydrothermal crystallization and modified related methods. J Adv Ceram 1:204–220CrossRefGoogle Scholar
  61. Orlov Yu L (1973) Mineralogy of diamond. Nauka, Moscow in RussianGoogle Scholar
  62. Puntes VF, Drishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117CrossRefGoogle Scholar
  63. Qui T, Wu XL, Mei YF, Wan GJ, Chu PK, Siu GG (2005) From Si nanotubes to nanowires: synthesis, characterization, and self-assembly. J Cryst Growth 277:143–148CrossRefGoogle Scholar
  64. Rajamanickam G, Narendhiran S, Muthu SP, Mukhopadhyay S, Perumalsamy R (2017) Hydrothermally derived nanoporous titanium dioxide nanorods/nanoparticles and their influence in dye-sensitized solar cell as a photoanode. Chem Phys Lett 689:19–25CrossRefGoogle Scholar
  65. Reverchon E, Adami R (2006) Nanomaterials and supercritical fluids. J Supercrit Fluid 37:1–22CrossRefGoogle Scholar
  66. Riman RE, Suchanek WL, Byrappa K, Chen CW, Shuk P, Oakes CS (2002) Solution synthesis of hydroxyapatite designer particulates. Solid State Ionics 151:393–402CrossRefGoogle Scholar
  67. Roy R, Tuttle OF (1956) Investigations under hydrothermal conditions. Phys Chem Earth 1:138–180CrossRefGoogle Scholar
  68. Roy R (1994) Accelerating the kinetics of low-temperature inorganic syntheses. J Solid State Chem 111:11–17CrossRefGoogle Scholar
  69. Roy R, Ravichandran D, Ravindranathan P, Badzian A (1996) Evidence for hydrothermal growth of diamond in the C-H-O and C-H-O halogen system. J Mater Res 11:1164–1168CrossRefGoogle Scholar
  70. Seo DS, Lee JK, Kim H (2001) Preparation of nanotube-shaped TiO2 powder. J Cryst Growth 229:428–432CrossRefGoogle Scholar
  71. Shah PS, Husain S, Johnston KP, Korgel BA (2001) Nanocrystal arrested precipitation in supercritical carbon dioxide. J Phys Chem B 105:9433–9440CrossRefGoogle Scholar
  72. Singh GP, Shrestha KM, Nepal A, Klabunde KJ, Sorensen CM (2014) Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting. Nanotechnology 25:265701 (11pp)CrossRefGoogle Scholar
  73. Schmidt I, Benndorf C (1998) Mechanisms of low temperature growth of diamond using halogenated precursorgases. Diam Relat Mater 7:266CrossRefGoogle Scholar
  74. Tanigawa S, Irie H (2016) Visible-light-sensitive two-step overall water-splitting based on band structure control of titanium dioxide. Appl Catal B Environ 180:1–5CrossRefGoogle Scholar
  75. Tao X, Zhao Y, Mu L, Wang S, Li R, Li C (2017) Bismuth tantalum oxyhalogen: a promising candidate photocatalyst for solar water splitting. Adv Energy Mater 8:1701392–1701397CrossRefGoogle Scholar
  76. Tian Z, Liu J, Voigt JA, Xu H, Mcddermott MJ (2003) Dendritic growth of cubically ordered nanoporous materials through self-assembly. Nano Lett 3:89CrossRefGoogle Scholar
  77. Tsai CC, Teng H (2004) Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chem Mater 16:4352–4358CrossRefGoogle Scholar
  78. Vasilev VG, Kovalski VP, Cherski NV (1968) Origin of diamond. Nedra, Moscow (in Russian)Google Scholar
  79. Wang D, Yu D, Peng Y, Meng Z, Zhang S, Qian Y (2003) Formation of antimony nanotubes via a hydrothermal reduction process. Nanotechnology 14:748–751CrossRefGoogle Scholar
  80. Wang H, Liu Y, Li M, Huang H, Zhong M, Shen H (2009) Hydrothermal growth of large-scale macroporous TiO2 nanowires and its application in 3D dye-sensitized solar cells. Appl Phys A Mater Sci Process 97:25–29CrossRefGoogle Scholar
  81. Wang Q, Hisatomi T, Mab SSK, Li Y, Domen K (2014) Core/shell structured La- and Rh-co-doped SrTiO3 as a hydrogen evolution photocatalyst in Z-scheme overall water splitting under visible light irradiation. Chem Mater 26:4144–4150CrossRefGoogle Scholar
  82. Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C, Pan Z, Takata T, Nakabayashi M, Shibata N (2016) Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding. Nat Mater 15:611–615CrossRefGoogle Scholar
  83. Wu ZL, Wang CH, Zhao B, Dong J, Lu F, Wang WH, Wang WC, Wu GJ, Cui JZ, Cheng P (2016) A semi-conductive copper-organic framework with two types of photocatalytic activity. Angew Chem Int Ed 55:4938–4942CrossRefGoogle Scholar
  84. Xiang Q, Cheng F, Lang D (2016) Hierarchical layered WS2/Graphene-modified CdS nanorods for efficient photocatalytic hydrogen evolution. ChemSusChem 9:996–1002CrossRefGoogle Scholar
  85. Xie Q, Dai Z, Huang W, Liang J, Jiang C, Qian YT (2005) Synthesis of ferromagnetic single-crystalline cobalt nanobelts via a surfactant-assisted hydrothermal reduction process. Nanotechnology 16:2958–2962CrossRefGoogle Scholar
  86. Yamakov V, Wolf D, Phillpot S, Mukherjee A, Gleiter H (2004) Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat Mater 3:43–47CrossRefGoogle Scholar
  87. Yakobson BI, Smalley RE (1997) Fullerene nanotubes: C1,000,000 and beyond: some unusual new moleculeslong, hollow fibers with tantalizing electronic and mechanical properties-have joined diamonds and graphite in the carbon family. Am Sci 85:325Google Scholar
  88. Yu JG, Wang WG, Cheng B, Su BL (2009) Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment. J Phys Chem C 113:6743–6750CrossRefGoogle Scholar
  89. Yuan YJ, Chen DQ, Huang YW, Yu ZT, Zhong JS, Chen TT, Tu WG, Guan ZJ, Cao DP (2016) MoS2 nanosheet-modified CuInS2 photocatalyst for visible-light-driven hydrogen production from water. ChemSusChem 9:1003–1009CrossRefGoogle Scholar
  90. Yue X, Yi S, Wang R, Zhang Z, Qiu S (2016) Cadmium sulfide and nickel synergetic co-catalysts supported on graphitic carbon nitride for visible-light-driven photocatalytic hydrogen evolution. Sci Rep 6:22268–22269CrossRefGoogle Scholar
  91. Zhang H, Lv XJ, Li YM, Wang Y, Li JH (2010) P25-Graphene composite as a high performance photocatalyst. ACS Nano 4:380–386CrossRefGoogle Scholar
  92. Zhang J, Jin X, Morales-Guzman PI, Yu X, Liu H, Zhang H, Razzari L, Claverie JP (2016a) Engineering the absorption and field enhancement properties of Au-TiO2 nanohybrids via whispering gallery mode resonances for photocatalytic water splitting. ACS Nano 10:4496–4503CrossRefGoogle Scholar
  93. Zhang G, Lan ZA, Lin L, Lin S, Wang X (2016b) Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem Sci 7:3062–3066CrossRefGoogle Scholar
  94. Zhao J, Wang X, Chen R, Li L (2005) Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates. Mater Lett 59:2329CrossRefGoogle Scholar
  95. Zhao J, Yan X, Zhao N, Li X, Lu B, Zhang X, Yu H (2018) Cocatalyst designing: a binary noble-metal-free cocatalyst system consisting of ZnIn2S4 and In(OH)3 for efficient visible-light photocatalytic water splitting. RSC Adv 8:4979–4986CrossRefGoogle Scholar
  96. Zhu Y, Zheng H, Li Y, Gao L, Yang Z, Qian YT (2003) Synthesis of ag dendritic nanostructures by using anisotropic nickel nanotubes. Mater Res Bull 38:1829–1834CrossRefGoogle Scholar
  97. Zhu Z, Chen JY, Su KY, Wu RJ (2016) Efficient hydrogen production by water-splitting over Pt-deposited C-HS-TiO2 hollow spheres under visible light. J Taiwan Inst Chem Eng 60:222–228CrossRefGoogle Scholar
  98. Zhu M, Sun Z, Fujitsuka M, Majima T (2018) Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light. Angew Chem Int Ed Engl 57:2160–2164CrossRefGoogle Scholar
  99. Zou ZG, Ye JH, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • G. P. Singh
    • 1
  • Neha Singh
    • 2
  • Ratan Kumar Dey
    • 2
  • Kamal Prasad
    • 3
  1. 1.Centre for NanotechnologyCentral University of JharkhandRanchiIndia
  2. 2.Centre for Applied ChemistryCentral University of JharkhandRanchiIndia
  3. 3.Department of PhysicsTilka Manjhi Bhagalpur UniversityBhagalpurIndia

Personalised recommendations