Electron Transport in Ferromagnetic Nanostructures

  • Falk-Ulrich Stein
  • Guido MeierEmail author
Part of the NanoScience and Technology book series (NANO)


The proposal of logic- and memory devices based on magnetic domain-wall motion in nanostructures created a great demand on the understanding of the dynamics of domain walls. We describe the controlled creation and annihilation of domain walls by Oersted-field pulses as well as their internal dynamics during motion. Electric measurements of the magnetoresistance are utilized to identify permanent- or temporal creation and continuous motion of domain walls initiated by nanosecond short field pulses in external magnetic fields. The injection of domain walls into nanowires with control of their magnetic pattern (transverse or vortex), their type (head-to-head or tail-to-tail magnetization orientation) and their sense of magnetization rotation (clockwise or counter clockwise chirality) is reliably achieved. Influencing the creation process of consecutively created domain walls to obtain multiple walls inside one wire or to mutually annihilate the walls is found to be possible by changes of magnetic field parameters. The time structure of the creation process is analysed by time-resolved transmission X-ray microscopy. After complete formation wall transformations are observed above a critical driving field known as the Walker breakdown. Internal excitations of vortex domain walls are also found in low field motion. A strong interplay between internal dynamics and the macroscopic motion is identified.



We are grateful to Ulrich Merkt for continuous support and fruitful discussions over many years. We thank MarkusWeigand, Hermann Stoll, and Gisela Schütz, Max-Planck-Institute for Intelligent Systems, Stuttgart, Germany as well as Mi-Young Im and Peter Fischer, LBNL Berkeley, CA,USA for excellent, long-standing cooperation. We acknowledge financial support from the Deutsche Forschungsgemeinschaft via SFB 668 ’Magnetism from the Single Atom to the Nanostructure’, via Graduiertenkolleg 1286 ’Functional Metal-Semiconductor Hybrid Systems’, and via excellence cluster ’The Hamburg Centre for Ultrafast Imaging - Structure, Dynamics and Control of Matter on the Atomic Scale’.


  1. 1.
    M.H. Kryder, C.S. Kim, IEEE Trans. Magn. 45, 3406 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Everspin Technolgies - The MRAM company, as of (2014)
  3. 3.
    S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    D.H. Smith, IEEE Trans. Magn. 1, 281 (1965)ADSCrossRefGoogle Scholar
  5. 5.
    H. Banks, The New York Times, September 20th (1981)Google Scholar
  6. 6.
    J.-S. Kim, M.-A. Mawass, A. Bisig, B. Krüger, R.M. Reeve, T. Schulz, F. Büttner, J. Yoon, C.-Y. You, M. Weigand, H. Stoll, G. Schütz, H.J.M. Swagten, B. Koopmans, S. Eisebitt, M. Kläui, Nat. Commun. 5, 3429 (2014)Google Scholar
  7. 7.
    D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, R.P. Cowburn, Science 309, 1688 (2005)Google Scholar
  8. 8.
    R. Mattheis, S. Glathe, M. Diegel, U. Hübner, J. Appl. Phys. 111, 113920 (2012)Google Scholar
  9. 9.
    K. Zeissler, S.K. Walton, S. Ladak, D.E. Read, T. Tyliszczak, L.F. Cohen, W.R. Branford, Sci. Rep. 3, 1252 (2013)Google Scholar
  10. 10.
    A. Pushp, T. Phung, C. Rettner, B.P. Hughes, S.-H. Yang, L. Thomas, S.P.P. Parkin, Nat. Phys. 9, 505 (2013)Google Scholar
  11. 11.
    A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, T. Shinjo, Phys. Rev. Lett. 92, 077205 (2004)Google Scholar
  12. 12.
    G.S.D. Beach, C. Nistor, C. Knutson, M. Tsoi, J.L. Erskine, Nanowires Nat. Mater. 4, 741 (2005)Google Scholar
  13. 13.
    M. Hayashi, L. Thomas, Y.B. Bazaliy, C. Rettner, R. Moriya, X. Jiang, S.S.P. Parkin, Phys. Rev. Lett. 96, 197207 (2006)Google Scholar
  14. 14.
    G. Meier, M. Bolte, R. Eiselt, B. Krüger, D.-H. Kim, P. Fischer, Phys. Rev. Lett. 98, 187202 (2007)Google Scholar
  15. 15.
    M. Hayashi, L. Thomas, C. Rettner, R. Moriya, Y.B. Bazaliy, S.S.P. Parkin, Phys. Rev. Lett. 98, 037204 (2007)Google Scholar
  16. 16.
    L. Thomas, R. Moriya, C. Rettner, S.S.P. Parkin, Science 330, 1810 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    E. Saitoh, H. Miyajima, T. Yamaoka, G. Tatara, Nature 432, 203 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    L. Bocklage, B. Krüger, R. Eiselt, M. Bolte, P. Fischer, G. Meier, Phys. Rev. B 78, 180405(R) (2008)Google Scholar
  19. 19.
    A. Bisig, J. Rhensius, M. Kammerer, M. Curcic, H. Stoll, G. Schütz, B. Van Waeyenberge, K.W. Chou, T. Tyliszczak, L.J. Heyderman, S. Krzyk, A. von Bieren, M. Kläui, Appl. Phys. Lett. 96, 152506 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    M. Kläui, P.-O. Jubert, R. Allensbach, A. Bischof, J.A.C. Bland, G. Faini, U. Rüdiger, C.A.F. Vaz, L. Vila, C. Vouille, Phys. Rev. Lett. 95, 026601 (2005)Google Scholar
  21. 21.
    M. Kläui, H. Ehrke, U. Rüdiger, T. Kasama, R.E. Dunin-Borkowski, D. Backes, L.J. Heyderman, C.A.F. Vaz, J.A.C. Bland, G. Faini, E. Cambril, W. Wernsdorfer, Appl. Phys. Lett. 87, 102509 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    M. Hayashi, L. Thomas, C. Rettner, R. Moriya, X. Jiang, S.S.P. Parkin, Phys. Rev. Lett. 97, 207205 (2006)Google Scholar
  23. 23.
    P. Lendecke, Verlag Dr. Hut, München (2010)Google Scholar
  24. 24.
    C. Wuth, L. Kolbe, G. Meier, J. Appl. Phys. 114, 103901 (2013)Google Scholar
  25. 25.
    C.H. Marrows, G. Meier, J. Phys.: Cond. Mat. 24, 020301 (2012)Google Scholar
  26. 26.
    P.-E. Weiss, Comptes rendus de l’Académie des sciences 143, 1136 (1906)Google Scholar
  27. 27.
    L. Landau, E. Lifshits, Phys. Zeitsch. der Sow. 8, 153 (1935)Google Scholar
  28. 28.
    S. Middlehoek, J. Appl. Phys. 34, 1054 (1963)Google Scholar
  29. 29.
    E.E. Huber Jr., D.O. Smith, J.B. Goodenough, J. Appl. Phys. 29, 294 (1958)Google Scholar
  30. 30.
    Y. Nakatani, A. Thiaville, J. Milat, J. Magn. Magn. Mater. 290, 750 (2005)Google Scholar
  31. 31.
    B. Krüger, Current-Driven Magnetization Dynamics: Analytical Modeling and Numerical Simulation (Universität Hamburg, 2011)Google Scholar
  32. 32.
    D. Petit, A.-V. Jausovec, D. Read, R.P. Cowburn, J. Appl. Phys. 103, 114307 (2008)Google Scholar
  33. 33.
    S. Zhang, Z. Li, Phys. Rev. Lett. 93, 127204 (2004)Google Scholar
  34. 34.
    B. Krüger, D. Pfannkuche, M. Bolte, G. Meier, U. Merkt, Phys. Rev. B 75, 054421 (2007)Google Scholar
  35. 35.
    J.C. Slonczewski, J. Appl. Phys. 44, 1759 (1973)Google Scholar
  36. 36.
    A.A. Thiele, J. Appl. Phys. 45, 377 (1974)Google Scholar
  37. 37.
    N.L. Schryer, L.R. Walker, J. Appl. Phys. 45, 5406 (1974)Google Scholar
  38. 38.
    J.F. Dillon Jr., published in Treatise on Magnetism, III, 450 (Academic, New York, 1963)Google Scholar
  39. 39.
    K. Ramstöck, W. Hartung, A. Hubert, Phys. Stat. Sol. (a) 155, 505 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    L. Bocklage, B. Krüger, T. Matsuyama, M. Bolte, U. Merkt, D. Pfannkuche, G. Meier, Phys. Rev. Lett. 103, 197204 (2009)Google Scholar
  41. 41.
    M. Hayashi, Current Driven Dynamics of Magnetic Domain Walls in Permalloy Nanowires (Stanford University, 2006)Google Scholar
  42. 42.
    W. Döring, Z. Naturforsch. 3a, 373 (1948)Google Scholar
  43. 43.
    L. Bocklage, B. Krüger, P. Fischer, G. Meier, Phys. Rev. B 81, 054404 (2010)Google Scholar
  44. 44.
    D.J. Clarke, O.A. Tretiakov, G.-W. Chern, Ya B. Bazaliy, O. Tchernyshyov, Phys. Rev. B 78, 134412 (2008)Google Scholar
  45. 45.
    M. Hayashi, L. Thomas, C. Rettner, R. Moriya, S.S.P. Parkin, Nat. Phys. 3, 21 (2007)Google Scholar
  46. 46.
    J.L. Prieto, M. Muñoz, E. Martinez, Phys. Rev. B 83, 104425 (2011)Google Scholar
  47. 47.
    L. O’Brien, D. Read, D. Petit, R.B. Cowburn, J. Phys.: Cond. Mat. 24, 024222 (2012)Google Scholar
  48. 48.
    K. Sentker, F.-U. Stein, L. Bocklage, T. Matsuyama, M.-Y. Im, P. Fischer, G. Meier, Appl. Phys. Lett. 104, 172404 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    L. Bocklage, F.-U. Stein, M. Martens, T. Matsuyama, G. Meier, Appl. Phys. Lett. 103, 092406 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    H. Ade, H. Stoll, Nat. Mater. 8, 281 (2009)Google Scholar
  51. 51.
    H. Stoll, A. Puzic, B. van Waeyenberge, P. Fischer, J. Raabe, M. Buess, T. Haug, R. Höllinger, C. Back, D. Weiss, G. Denbeaux, Appl. Phys. Lett. 84, 3328 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    H. Stoll, M. Noske, M. Weigand, K. Richter, B. Krüger, R.M. Reeve, M. Hänze, C.F. Adolff, F.-U. Stein, G. Meier, M. Kläui, G. Schütz, Front. Phys. 3, 26 (2015)Google Scholar
  53. 53.
    X. Jiang, L. Thomas, R. Moriya, S.S.P. Parkin, Nano Lett. 11, 96 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    F.-U. Stein, L. Bocklage, M. Weigand, G. Meier, Phys. Rev. B 89, 024423 (2014)Google Scholar
  55. 55.
    L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner, S.S.P. Parkin, Nature 443, 197 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    F.-U. Stein, L. Bocklage, M. Weigand, G. Meier, Sci. Rep. 3, 1737 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Max-Planck Institute for the Structure and Dynamics of MatterHamburgGermany

Personalised recommendations