Advertisement

Plant Secondary Metabolites and Their General Function in Plants

  • Angelika BöttgerEmail author
  • Ute Vothknecht
  • Cordelia Bolle
  • Alexander Wolf
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

Primary metabolites are compounds that are associated with essential cellular functions. Therefore, they are very much ubiquitously found in all plants. By contrast, secondary metabolites have much more specific functions. They are often species specific and can be dispensable under many conditions. Nevertheless, the basis of most secondary metabolites are by-products or intermediates of primary metabolism. Secondary metabolites do not generally increase a plant fitness, but in the natural environment, they might be essential for survival and reproduction. They are thus mostly made under controlled conditions for a specific purpose such as defence against pathogens and herbivores, improved tolerance to abiotic stresses, attraction of insects and animals for fertilization and/or seed dispersal or repellence of unwanted feeders.

References

  1. Adewusi SRA (1990) Turnover of Dhurrin in green Sorghum seedlings. Plant Physiol 94(3):1219–1224CrossRefGoogle Scholar
  2. Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17(2):73–90CrossRefGoogle Scholar
  3. Baldwin IT, Zhang ZP, Diab N, Ohnmeiss TE, McCloud ES, Lynds GY, Schmelz EA (1997) Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta 201(4):397–404CrossRefGoogle Scholar
  4. Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, Ashton NW, Axtell MJ, Barker E, Barker MS, Bennetzen JL, Bonawitz ND, Chapple C, Cheng CY, Correa LGG, Dacre M, DeBarry J, Dreyer I, Elias M, Engstrom EM, Estelle M, Feng L, Finet C, Floyd SK, Frommer WB, Fujita T, Gramzow L, Gutensohn M, Harholt J, Hattori M, Heyl A, Hirai T, Hiwatashi Y, Ishikawa M, Iwata M, Karol KG, Koehler B, Kolukisaoglu U, Kubo M, Kurata T, Lalonde S, Li KJ, Li Y, Litt A, Lyons E, Manning G, Maruyama T, Michael TP, Mikami K, Miyazaki S, Morinaga S, Murata T, Mueller-Roeber B, Nelson DR, Obara M, Oguri Y, Olmstead RG, Onodera N, Petersen BL, Pils B, Prigge M, Rensing SA, Riano-Pachon DM, Roberts AW, Sato Y, Scheller HV, Schulz B, Schulz C, Shakirov EV, Shibagaki N, Shinohara N, Shippen DE, Sorensen I, Sotooka R, Sugimoto N, Sugita M, Sumikawa N, Tanurdzic M, Theissen G, Ulvskov P, Wakazuki S, Weng JK, Willats WWGT, Wipf D, Wolf PG, Yang LX, Zimmer AD, Zhu QH, Mitros T, Hellsten U, Loque D, Otillar R, Salamov A, Schmutz J, Shapiro H, Lindquist E, Lucas S, Rokhsar D, Grigoriev IV (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332(6032):960–963CrossRefGoogle Scholar
  5. Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP, Speck T, Stein WE (1998) Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu Rev Ecol Syst 29:263–292.  https://doi.org/10.1146/annurev.ecolsys.29.1.263CrossRefGoogle Scholar
  6. Buban T, Orosz-Kovacs Z, Farkas A (2003) The nectary as the primary site of infection by Erwinia amylovora (Burr.) Winslow et al.: a mini review. Plant Syst Evol 238(1–4):183–194CrossRefGoogle Scholar
  7. Buchanan BB, Gruissem W, Vickers K, Jones RL (2015) Biochemistry and molecular biology of plants. Wiley-Blackwell, New YorkGoogle Scholar
  8. Dahlgren RMT (1980) A revised system of classification of the angiosperms. Bot J Linn Soc 80(2):91–124CrossRefGoogle Scholar
  9. Dixon RA, Strack D (2003) Phytochemistry meets genome analysis, and beyond. Phytochemistry 62(6):815–816CrossRefGoogle Scholar
  10. Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198(1):16–32CrossRefGoogle Scholar
  11. Eisner T, Eisner M (1991) Unpalatability of the Pyrrolizidine alkaloid-containing moth Utetheisa Ornatrix, and its larva, to wolf spiders. Psyche 98(1):111–118.  https://doi.org/10.1155/1991/95350CrossRefGoogle Scholar
  12. Errera L, Durand T (1886) Efficacité des structures défensives des plantes. Bulletin de la Societé Royale de Botanique de Belgique / Bulletin van de Koninklijke Belgische Botanische Vereniging 25:79–103Google Scholar
  13. Euler M, Baldwin IT (1996) The chemistry of defense and apparency in the corollas of Nicotiana attenuata. Oecologia 107(1):102–112CrossRefGoogle Scholar
  14. Farmer EE, Ryan CA (1990) Interplant communication – airborne methyl Jasmonate induces synthesis of proteinase-inhibitors in plant-leaves. Proc Natl Acad Sci U S A 87(19):7713–7716CrossRefGoogle Scholar
  15. Foley WJ, Moore BD (2005) Plant secondary metabolites and vertebrate herbivores – from physiological regulation to ecosystem function. Curr Opin Plant Biol 8(4):430–435CrossRefGoogle Scholar
  16. Fraenkel GS (1959) Raison detre of secondary plant substances. Science 129(3361):1466–1470CrossRefGoogle Scholar
  17. Gunduz A, Turedi S, Russell RM, Ayaz FA (2008) Clinical review of grayanotoxin/mad honey poisoning past and present. Clin Toxicol 46(5):437–442CrossRefGoogle Scholar
  18. Hartmann T (1996) Diversity and variability of plant secondary metabolism: a mechanistic view. Entomol Exp Appl 80(1):177–188CrossRefGoogle Scholar
  19. Hartmann T (2008) The lost origin of chemical ecology in the late 19th century. Proc Natl Acad Sci U S A 105(12):4541–4546.  https://doi.org/10.1073/pnas.0709231105CrossRefPubMedPubMedCentralGoogle Scholar
  20. Heckel DG (2014) Insect detoxification and sequestration strategies. In: Annual Plant Reviews. John Wiley & Sons, Ltd, pp 77–114.  https://doi.org/10.1002/9781118829783.ch3CrossRefGoogle Scholar
  21. Heil M (2011) Nectar: generation, regulation, and ecological functions. Trends Plant Sci 16(4):191–200.  https://doi.org/10.1016/j.tplants.2011.01.003CrossRefPubMedGoogle Scholar
  22. Holzinger F, Frick C, Wink M (1992) Molecular-basis for the insensitivity of the monarch (Danaus-Plexippus) to cardiac-glycosides. FEBS Lett 314(3):477–480CrossRefGoogle Scholar
  23. Irwin RE, Adler LS, Brody AK (2004) The dual role of floral traits: pollinator attraction and plant defense. Ecology 85(6):1503–1511CrossRefGoogle Scholar
  24. Janzen DH, Martin PS (1982) Neotropical anachronisms - the fruits the Gomphotheres ate. Science 215(4528):19–27CrossRefGoogle Scholar
  25. Karban R, Yang LH, Edwards KF (2014) Volatile communication between plants that affects herbivory: a meta-analysis. Ecol Lett 17(1):44–52CrossRefGoogle Scholar
  26. Kerner von Marilaun A (1879) Die Schutzmittel der Blüthen gegen unberufene Gaste. K.K. Zoologisch-Botanische Gesellschaft, WienGoogle Scholar
  27. Koroleva OA, Davies A, Deeken R, Thorpe MR, Tomos AD, Hedrich R (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124(2):599–608.  https://doi.org/10.1104/pp.124.2.599CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kumar P, Pandit SS, Steppuhn A, Baldwin IT (2014) Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46's role in a nicotine-mediated antipredator herbivore defense. Proc Natl Acad Sci U S A 111(4):1245–1252.  https://doi.org/10.1073/pnas.1314848111CrossRefPubMedGoogle Scholar
  29. Lee Y, Moon SJ, Montell C (2009) Multiple gustatory receptors required for the caffeine response in Drosophila. Proc Natl Acad Sci U S A 106(11):4495–4500CrossRefGoogle Scholar
  30. Lee Y, Moon SJ, Wang YJ, Montell C (2015) A Drosophila gustatory receptor required for strychnine sensation. Chem Senses 40(7):525–533CrossRefGoogle Scholar
  31. Lowry B, Hebant C, Lee D (1980) The origin of land plants - a new look at an old problem. Taxon 29(2–3):183–197CrossRefGoogle Scholar
  32. Moller BL (2010) Functional diversifications of cyanogenic glucosides. Curr Opin Plant Biol 13(3):338–347CrossRefGoogle Scholar
  33. Morrissey JP, Wubben JP, Osbourn AE (2000) Stagonospora avenae secretes multiple enzymes that hydrolyze oat leaf saponins. Mol Plant-Microbe Interact 13(10):1041–1052CrossRefGoogle Scholar
  34. Ness JH (2003) Catalpa bignonioides alters extrafloral nectar production after herbivory and attracts ant bodyguards. Oecologia 134(2):210–218CrossRefGoogle Scholar
  35. Petit C, Hossaert-McKey M, Perret P, Blondel J, Lambrechts MM (2002) Blue tits use selected plants and olfaction to maintain an aromatic environment for nestlings. Ecol Lett 5(4):585–589CrossRefGoogle Scholar
  36. Pichersky E, Lewinsohn E (2011) Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol 62:549–566.  https://doi.org/10.1146/annurev-arplant-042110-103814CrossRefPubMedGoogle Scholar
  37. Rehman F, Khan FA, Badruddin SMA (2012) Role of Phenolics in plant defense against insect herbivory. In: Khemani LD, Srivastava MM, Srivastava S (eds) Chemistry of Phytopotentials: health, energy and environmental perspectives. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 309–313.  https://doi.org/10.1007/978-3-642-23394-4_65CrossRefGoogle Scholar
  38. Schwab W (2003) Metabolome diversity: too few genes, too many metabolites? Phytochemistry 62(6):837–849CrossRefGoogle Scholar
  39. Stahl E (1888) Pflanzen und Schnecken. Biologische Studien über die Schutzmittel der Pflanzen gegen Schneckenfraß. Jenaische Z Naturwiss 15:557–684Google Scholar
  40. Stephenson AG (1982) Iridoid glycosides in the nectar of Catalpa-Speciosa are unpalatable to nectar thieves. J Chem Ecol 8(7):1025–1034CrossRefGoogle Scholar
  41. Suarez-Rodriguez M, Lopez-Rull I, Garcia CM (2013) Incorporation of cigarette butts into nests reduces nest ectoparasite load in urban birds: new ingredients for an old recipe. Biol Lett 9(1):20120931CrossRefGoogle Scholar
  42. Takabayashi J, Dicke M (1996) Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci 1(4):109–113CrossRefGoogle Scholar
  43. Weng JK, Philippe RN, Noel JP (2012) The rise of Chemodiversity in plants. Science 336(6089):1667–1670CrossRefGoogle Scholar
  44. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64(1):3–19CrossRefGoogle Scholar
  45. Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol 5(4):300–307.  https://doi.org/10.1016/S1369-5266(02)00264-9CrossRefPubMedGoogle Scholar
  46. Yonekura-Sakakibara K, Saito K (2009) Functional genomics for plant natural product biosynthesis. Nat Prod Rep 26(11):1466–1487CrossRefGoogle Scholar
  47. Zhu F, Qin C, Tao L, Liu X, Shi Z, Ma XH, Jia J, Tan Y, Cui C, Lin JS, Tan CY, Jiang YY, Chen YZ (2011) Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proc Natl Acad Sci U S A 108(31):12943–12948CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Angelika Böttger
    • 1
    Email author
  • Ute Vothknecht
    • 2
  • Cordelia Bolle
    • 3
  • Alexander Wolf
    • 4
  1. 1.Department Biology IILMU MunichPlanegg-MartinsriedGermany
  2. 2.IZMB-Plant Cell BiologyUniversity of BonnBonnGermany
  3. 3.Department Biology ILMU MunichPlanegg-MartinsriedGermany
  4. 4.Inst. Molecular Toxicology/PharmacologyHelmholtz Zentrum MünichNeuherbergGermany

Personalised recommendations