The N’s of Turbulence

  • Arkady TsinoberEmail author


We start with the N’s of turbulence. These comprise most of the reasons why turbulence is so impossibly difficult along with the essential constructive aspects facilitating all that is found in this book, i.e to a large extent the “essence” of turbulence. Whatever the approach there are important common issues, difficulties, features. Most of theses belong to the following categories: nonlinearity, nonlocality (and consequently “nondecomposabilty”) and non-integrability, non-Gaussianity and non-Markovianity, non-equilibrium and (time) irreversible, no scale invariance and no other symmetries, no small parameters and no low-dimensional description. As a consequence there no theory based on first principles as such NSE equations – a real frustration for a theoretician. In other words, the terms without the “non”s (e.g., non-linearity, non-locality, etc.) do belong to the category that theory can handle, but this seems unfortunately to exclude turbulence. There are also other closely related issues as, e.g. uncertainty and unpredictability.


  1. Antonia RA, Djenidi L, Danaila L, Tang SL (2017) Small scale turbulence and the finite Reynolds number effect. Phys Fluids 29:1–9CrossRefGoogle Scholar
  2. Barjona M, da Silva CB (2017) Kolmogorov’s Lagrangian similarity law revisited. Phys Fluids 29:105106CrossRefGoogle Scholar
  3. Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, CambridgezbMATHGoogle Scholar
  4. Betchov R (1956) An inequality concerning the production of vorticity in isotropic turbulence. J Fluid Mech 1:497–503MathSciNetzbMATHCrossRefGoogle Scholar
  5. Betchov R (1974) Non-Gaussian and irreversible events in isotropic turbulence. Phys Fluids 17:1509–1512CrossRefGoogle Scholar
  6. Betchov R (1976) On the non-Gaussian aspects of turbulence. Arch Mech 28(5–6):837–845Google Scholar
  7. Betchov R (1993) In: Dracos T, Tsinober A (eds) New approaches and turbulence. Birkhäuser, Basel, p 155Google Scholar
  8. Borisenkov Y, Kholmyansky M, Krylov S, Liberzon A, Tsinober A (2011) Super-miniature multi-hot-film probe for sub-Kolmogorov resolution in high-Re-turbulence. J Phys Conf Ser 318: 072004/1-10Google Scholar
  9. Borisenkov Y, Gulitski G, Kholmyansky M, Krylov S, Liberzon A, Tsinober A (2015) Micro-machined superminiature hot-film multiarray probe for field experiments with sub-Kolmogorov resolution. J Turbul 16(6):525–539CrossRefGoogle Scholar
  10. Cantwell BJ (1992) Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys Fluids A 4:782–793MathSciNetzbMATHCrossRefGoogle Scholar
  11. Cardesa JI, Vela-Martín JI, Jiménez J (2017) The turbulent cascade in five dimensions. Science 357:782–784MathSciNetCrossRefGoogle Scholar
  12. Cimarelli A, De Angelis E, Jimenez J, Casciola CM (2016) Cascades and wall-normal fluxes in turbulent channel flows. J Fluid Mech 796:417–436MathSciNetCrossRefGoogle Scholar
  13. Compte-Bellot G (1965) Ecoulement turbulent entre deux parois paralleles. In: Paris: publications scientifiques et techniques du ministere de l’air, vol 419, p 159. English translation: Bradshaw P (1969) In: Turbulent flow between two parallel walls. ARC no 31609. There is also a Russian translation,Google Scholar
  14. Constantin P (1994) Geometrical statistics in turbulence. SIAM Rev 36:73–98MathSciNetzbMATHCrossRefGoogle Scholar
  15. Corrsin S (1958) Local anisotropy in turbulent shear flow. Natl Adv Com Aeronaut Res Memo 58B11:1–15Google Scholar
  16. Djenidi L, Antonia RA, Danaila L (2017a) Self-preservation relation to the Kolmogorov similarity hypotheses. Phys Rev Fluids 2:05460Google Scholar
  17. Djenidi L, Lefeuvre N, Kamruzzaman M, Antonia RA (2017b) On the normalized dissipation parameter C\(_{\epsilon }\) in decaying turbulence. J Fluid Mech 817:61–79MathSciNetzbMATHCrossRefGoogle Scholar
  18. Dogan E, Hanson RE, Ganapathisubramani B (2016) Interactions of large-scale free-stream turbulence with turbulent boundary layers. J Fluid Mech 802:79–107MathSciNetCrossRefGoogle Scholar
  19. Doering CR (2009) The 3D Navier–Stokes problem. Ann Rev Fluid Mech 41:109–128MathSciNetzbMATHCrossRefGoogle Scholar
  20. Eyink GL, Drivas TD (2018) Cascades and dissipative anomalies in compressible fluid turbulence. Phys Rev X 8: 011022/1-39Google Scholar
  21. Falkovich G (2009) Symmetries of the turbulent state. J Phys A Math Theor 42:123001MathSciNetzbMATHCrossRefGoogle Scholar
  22. Falkovich G, Sreenivasan KR (2006) Lessons from hydrodynamic turbulence. Phys Today 59: 43–49CrossRefGoogle Scholar
  23. Ferchichi M, Tavoularis S (2000) Reynolds number dependence of the fine structure of uniformly sheared turbulence. Phys Fluids 12:2942–2953zbMATHCrossRefGoogle Scholar
  24. Feynmann R (1996) Lectures on computation. Addison-Wesley, BostonGoogle Scholar
  25. Foiaş C, Manley O, Rosa R, Temam R (2001) Navier–Stokes equations and turbulence. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  26. Frisch U (1995) Turbulence: the legacy of A.N. Kolmogorov. Cambridge University Press, CambridgeGoogle Scholar
  27. Frisch U et al (2008) Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence. Phys Rev Lett 101:144501CrossRefGoogle Scholar
  28. George WK (2012) Asymptotic effect of initial and upstream conditions on turbulence. J Fluids Eng 134:061203CrossRefGoogle Scholar
  29. George WK (2014) Reconsidering the ‘Local Equilibrium’ hypothesis for small scale turbulence. In: Farge M, Moffatt HK, Schneider K. Les Ulis, Fr (eds) Turbulence colloquium marseille 2011: fundamental problems of turbulence, 50 years after the marseille 1961 conference. EDP Sciences, pp 457–477Google Scholar
  30. Gkioulekas E (2007) On the elimination of the sweeping interactions from theories of hydrodynamic turbulence. Phys D 226:151–172MathSciNetzbMATHCrossRefGoogle Scholar
  31. Goto T, Kraichnan RH (2004) Turbulence and Tsallis statistics. Phys D 193:231–244MathSciNetzbMATHCrossRefGoogle Scholar
  32. Gulitskii G, Kholmyansky M, Kinzlebach W, Lüthi B, Tsinober A, Yorish S (2007a) Velocity and temperature derivatives in high Reynolds number turbulent flows in the atmospheric surface layer. Facilities, methods and some general results. J Fluid Mech 589:57–81zbMATHGoogle Scholar
  33. Gulitskii G, Kholmyansky M, Kinzlebach W, Lüthi B, Tsinober A, Yorish S (2007b) Velocity and temperature derivatives in high Reynolds number turbulent flows in the atmospheric surface layer. Part 2. Accelerations and related matters. J Fluid Mech 589:83–102zbMATHGoogle Scholar
  34. Gulitskii G, Kholmyansky M, Kinzlebach W, Lüthi B, Tsinober A, Yorish S (2007c) Velocity and temperature derivatives in high Reynolds number turbulent flows in the atmospheric surface layer. Part 3. Temperature and joint statistics of temperature and velocity derivatives. J Fluid Mech 589:103–123zbMATHGoogle Scholar
  35. Guala M, Liberzon A, Lüthi B, Tsinober A, Kinzelbach W (2006) An experimental investigation on Lagrangian correlations of small scale turbulence at low Reynolds number. J Fluid Mech 574:405–427MathSciNetzbMATHCrossRefGoogle Scholar
  36. Hamlington PE, Schumacher J, Dahm W (2008) Direct assessment of vorticity alignment with local and nonlocal strain rates in turbulent flows. Phys Fluids 20:111703zbMATHCrossRefGoogle Scholar
  37. Hill RJ (2006) Opportunities for use of exact statistical equations. J Turbul 7(43):1–13MathSciNetzbMATHGoogle Scholar
  38. Holmes PJ, Berkooz G, Lumley JL (1996) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  39. Holzner M, Lüthi B, Tsinober A, Kinzelbach W (2009) Acceleration, pressure and related issues in proximity of the turbulent/nonturbulent interface. J Fluid Mech 639:153–165Google Scholar
  40. Hopf E (1952) Statistical hydromechanics and functional calculus. J Ration Mech Anal 1:87–123MathSciNetzbMATHGoogle Scholar
  41. Johnson PL, Hamilton SS, Burns R, Meneveau C (2017) Analysis of geometrical and statistical features of Lagrangian stretching in turbulent channel flow using a database task-parallel particle tracking algorithm. Phys Rev Fluids 2: 014605/1-20Google Scholar
  42. Jimenez J (2012) Cascades in wall-bounded turbulence. Ann Rev Fluid Mech 44:27–45MathSciNetzbMATHCrossRefGoogle Scholar
  43. Jimenez J (2018) Coherent structures in wall-bounded turbulence. J Fluid Mech 842:P1–P100Google Scholar
  44. Jiménez J, Cardesa JI, Lozano-Durán A (2017) The turbulent cascade in physical space, EUROMECH-ERCOFTAC Colloquium 589 “Turbulent Cascades II” - 5–7 December 2017. Lyon, FranceGoogle Scholar
  45. Takuya Kawata T, Alfredsson PH (2018) Inverse Interscale Transport of the Reynolds Shear Stress in Plane Couette Turbulence. Phys Rev Lett 120:244501Google Scholar
  46. Kevlahan NK-R, Hunt JCR (1997) Nonlinear interactions in turbulence with strong irrotational straining. J Fluid Mech 337:333–364MathSciNetzbMATHCrossRefGoogle Scholar
  47. Kholmyansky M, Tsinober A, Yorish S (2001b) Velocity derivatives in the atmospheric turbulent flow at \(Re_{\lambda }\)\(=10^{4}\). Phys Fluids 13:311–314Google Scholar
  48. Kholmyansky M, Tsinober A (2009) On an alternative explanation of anomalous scaling and how well-defined is the concept of inertial range. Phys Lett A 273:2364–2367zbMATHCrossRefGoogle Scholar
  49. Klewicki JC (2010) Reynolds number dependence, scaling and dynamics of turbulent boundary layers. J Fluids Eng 132:094001CrossRefGoogle Scholar
  50. Klewicki JC, Philip J, Marusic I, Chauhan K, Morrill-Winte C (2014) Self-similarity in the inertial region of wall turbulence. Phys Rev E 90: 063015/1-14Google Scholar
  51. Kolmogorov AN (1941a) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30:299–303. For English translation see Tikhomirov VM (ed) (1991) Selected works of AN Kolmogorov, vol I, Kluwer, pp 318–321Google Scholar
  52. Kolmogorov AN (1941b) Dissipation of energy in locally isotropic turbulence. Dokl Akad Nauk SSSR 32:19–21. For English translation see Tikhomirov VM (ed) (1991) Selected works of AN Kolmogorov, vol I, Kluwer, pp 324–327Google Scholar
  53. Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure of turbulence is a viscous incompressible fluid at high Reynolds number. J Fluid Mech 13:82–85MathSciNetzbMATHCrossRefGoogle Scholar
  54. Kolmogorov AN (1985) In: Notes preceding the papers on turbulence in the first volume of his selected papers, vol I. Kluwer, Dordrecht, pp 487–488. English translation: Tikhomirov VM (ed) (1991) Selected works of AN KolmogorovGoogle Scholar
  55. Kondepudi D, Petrosky T, Pojman JA (2017) Dissipative structures and irreversibility in nature: celebrating 100th birth anniversary of Ilya Prigogine (1917–2003). Chaos 27, 104501/1-5MathSciNetzbMATHCrossRefGoogle Scholar
  56. Kosmann-Schwarzbach Y, Tamizhmani KM, Grammaticos B (eds) (2004) Integrability of nonlinear systems. Lecture notes in physics, vol 638Google Scholar
  57. Kraichnan RH (1991) Turbulent cascade and intermittency growth. Proc R Soc Lond A 434:65–78MathSciNetzbMATHCrossRefGoogle Scholar
  58. Kosmann-Schwarzbach et al. (2004)Google Scholar
  59. Lagrange J-L (1788) Mécanique analitique, Paris, Sect. X, p 271Google Scholar
  60. Landau LD (1944) On the problem of turbulence. Dokl Akad Nauk SSSR 44:339–343 (in Russian). English translation. In: Ter Haar D (ed) Collected papers of LD Landau. Pergamon, Oxford, pp 387–391Google Scholar
  61. Landau LD (1960) Fundamental problems. In: Fierz M, Weisskopf VF (eds) Theoretical physics in the twentieth century: a memorial volume to Wolfgang Pauli. Interscience, New York, pp 245–247Google Scholar
  62. Landau LD, Lifshits EM (1944) Fluid mechanics, 1st Russian ednGoogle Scholar
  63. Landau LD, Lifshits EM (1959) Fluid mechanics. Pergamon, New YorkGoogle Scholar
  64. Landau LD, Lifshits EM (1987) Fluid mechanics. Pergamon, New YorkzbMATHGoogle Scholar
  65. Laval J-P, Dubrulle B, Nazarenko S (2001) Nonlocality and intemittency in three-dimensional turbulence. Phys Fluids 13:995–2012zbMATHCrossRefGoogle Scholar
  66. Laws EM, Livesey JL (1978) Flow through screens. Ann Rev Fluid Mech 10:247–266zbMATHCrossRefGoogle Scholar
  67. Leonov VP, Shiryaev AN (1960) Some problems in the spectral theory of higher order moments II. Theory Probab Appl 5:417–421MathSciNetCrossRefGoogle Scholar
  68. Leung T, Swaminathan N, Davidson PA (2012) Geometry and interaction of structures in homogeneous isotropic turbulence. J Fluid Mech 710:453–481MathSciNetzbMATHCrossRefGoogle Scholar
  69. Lumley JL (1970) Stochastic tools in turbulence. Academic Press, New YorkzbMATHGoogle Scholar
  70. Lumley JL (1972) Application of central limit theorems to turbulence problems. In: Rosenblatt M, van Atta C (eds) Statistical models and turbulence, vol 12. Lecture notes in physics. Springer, Berlin, pp 1–26CrossRefGoogle Scholar
  71. Lumley JL (1992) Some comments on turbulence. Phys Fluids A 4:201–11zbMATHCrossRefGoogle Scholar
  72. Lüthi B, Tsinober A, Kinzelbach W (2005) Lagrangian measurement of vorticity dynamics in turbulent flow. J Fluid Mech 528:87–118zbMATHCrossRefGoogle Scholar
  73. Marusic I, McKeon BJ, Monkewitz PA, Nagib HM, Smits AJ, Sreenivasan KR (2010) Wall bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys Fluids 22:065103zbMATHCrossRefGoogle Scholar
  74. McKeon BJ (2017) The engine behind (wall) turbulence: perspectives on scale interactions. J Fluid Mech 817(P1):1–86MathSciNetzbMATHCrossRefGoogle Scholar
  75. McKeon BJ, Morrison JF (2007) Asymptotic scaling in turbulent pipe flow. Phil Trans Roy Soc A365(1852):635–876zbMATHCrossRefGoogle Scholar
  76. McComb WD (2014) Homogeneous Isotropic Turbulence. Oxford University Press, OxfordzbMATHCrossRefGoogle Scholar
  77. Meneveau C (2011) Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Ann. Rev Fluid Mech 43:219–245MathSciNetzbMATHCrossRefGoogle Scholar
  78. Monin AS, Yaglom AM (1971) Statistical fluid mechanics, vol 1. MIT Press, CambridgeGoogle Scholar
  79. Monin AS, Yaglom AM (1975) Statistical fluid mechanics, vol 2. MIT Press, CambridgeGoogle Scholar
  80. Morrison JF, Vallikivi M, Smits AJ (2016) The inertial subrange in turbulent pipe flow: centreline. J Fluid Mech 788:602–613MathSciNetzbMATHCrossRefGoogle Scholar
  81. Newton KA, Aref H (2003) Chaos versus turbulence. In: Scott A (ed) Encyclopedia of nonlinear science, pp 114–116Google Scholar
  82. Nicolis G (1986) Dissipative systems. Rep Prog Phys 49:873–949MathSciNetCrossRefGoogle Scholar
  83. Novikov EA (1967) Kinetic equations for a vortex field. Dokl Akad Nauk SSSR 177(2):299–301Google Scholar
  84. Novikov EA (1974) Statistical irreversibility of turbulence. Arch Mech 4:741–745zbMATHGoogle Scholar
  85. Novikov EA (1990a) The effects of intermittency on statistical characteristics of turbulence and scale similarity of breakdown coefficients. Phys Fluids A 2:814–820MathSciNetCrossRefGoogle Scholar
  86. Novikov EA (1990b) The internal dynamics of flows and formation of singularities. Fluid Dyn Res 6:79–89CrossRefGoogle Scholar
  87. Obukhov AN (1962) Some specific features of atmospheric turbulence. J Fluid Mech 13:77–81MathSciNetzbMATHCrossRefGoogle Scholar
  88. Ohkitani K (1994) Kinematics of vorticity: vorticity-strain conjugation in incompressible fluid flows. Phys Rev E 50:5107–5110MathSciNetCrossRefGoogle Scholar
  89. Onsager L (1945) The distribution of energy in turbulence. Phys Rev 68:286Google Scholar
  90. Onsager L (1949) Statistical hydrodynamics. Suppl Nuovo Cim VI(IX):279–287MathSciNetCrossRefGoogle Scholar
  91. Ott, E. (1999) The role of Lagrangian chaos in the creation of multifractal measures. In: Gyr A, Kinzelbach W, Tsinober A (eds) Fundamental problematic issues in turbulence. Birkhäuser, Basel, pp 381–403CrossRefGoogle Scholar
  92. Orszag SA (1977) Lectures on the statistical theory of turbulence. In: Balian R, Peube J-L (eds) Fluid dynamics. Gordon and Breach, New York, pp 235–374Google Scholar
  93. Pathikonda G, Christensen KT (2017) Inner-outer interactions in a turbulent boundary layer overlying complex roughness. Phys Rev Fluids 2:044603CrossRefGoogle Scholar
  94. Paul I, Papadakis I, Vassilicos JC (2017) Genesis and evolution of velocity gradients in near-field spatially developing turbulence. J Fluid Mech 815:295–332MathSciNetzbMATHCrossRefGoogle Scholar
  95. Pierrehumbert RT, Widnall SE (1982) The two- and three-dimensional instabilities of a spatiallyperiodic shear layer. J Fluid Mech 114:59–82zbMATHCrossRefGoogle Scholar
  96. Porter DH, Woodward PR, Pouquet A (1998) Inertial range structures in decaying compressible turbulent flows. Phys Fluids 10:237–245MathSciNetzbMATHCrossRefGoogle Scholar
  97. Priyadarshana P, Klewicki J, Treat S, Foss J (2007) Statistical structure of turbulent-boundary-layer velocity-vorticity products at high and low Reynolds numbers. J Fluid Mech 570:307–346zbMATHCrossRefGoogle Scholar
  98. Pumir A, Xu H, Boffetta, Falkovich G, Bodenschatz E (2014) Redistribution of kinetic energy in turbulent flows. Phys Rev X4: 041006/1-11Google Scholar
  99. Pumir A, Xu H, Bodenschatz E, Grauer R (2016) Single-particle motion and vortex stretching in three-dimensional turbulent flows. Phys Rev Lett 116(12):124502/1-5Google Scholar
  100. Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press, CambridgezbMATHGoogle Scholar
  101. Ruelle D (1976) The Lorenz attractor and the problem of turbulence. In: Temam R (ed) Turbulence and Navier–Stokes equations, vol 565. Lecture notes in mathematics. Springer, Berlin, pp 146–158CrossRefGoogle Scholar
  102. Sawford BL and Yeung PK (2015) Direct numerical simulation studies of Lagrangian intermittency in turbulence. Phys Fluids 27:065109/1–21CrossRefGoogle Scholar
  103. Saddoughi SG (1997) Local isotropy in complex turbulent boundary layers at high Reynolds number. J Fluid Mech 348:201–245MathSciNetCrossRefGoogle Scholar
  104. Shen X, Warhaft Z (2000) The anisotropy of the small-scale structure in high Reynolds number, \(Re_{\lambda }=1,000,\) turbulent shear flow. Phys Fluids 12:2976–2989Google Scholar
  105. Smits AJ, McKeon BJ, Marusic I (2011) High-Reynolds number wall turbulence. Annu Rev Fluid Mech 43:353–375zbMATHCrossRefGoogle Scholar
  106. Suzuki Y, Nagano Y (1999) Modification of turbulent helical/nonhelical flows with small-scale energy input. Phys Fluids 11:3499–3511zbMATHCrossRefGoogle Scholar
  107. Tan-Attichat J, Nagib HM, Loehrke RI (1989) Interaction of free-stream turbulence with screens and grids: a balance between turbulence scales. J Fluid Mech 114:501–528CrossRefGoogle Scholar
  108. Taylor GI (1917) Observations and speculations on the nature of turbulent motion. In: Batchelor GK (ed) The scientific papers of sir geoffrey ingram taylor, volume 2, meteorology, oceanography and turbulent flow, scientific papers, Cambridge University Press 1960, pp 69–78Google Scholar
  109. Taylor GI (1935) The statistical theory of turbulence. Proc R Soc Lond A 151:421–478zbMATHCrossRefGoogle Scholar
  110. Taylor GI (1938a) Production and dissipation of vorticity in a turbulent fluid. Proc R Soc Lond A 164:15–23zbMATHCrossRefGoogle Scholar
  111. Tennekes H, Lumley JL (1972) A first course of turbulence. MIT Press, CambridgezbMATHGoogle Scholar
  112. Tsinober A (1998a) Is concentrated vorticity that important? Eur J Mech B Fluids 17:421–449zbMATHCrossRefGoogle Scholar
  113. Tsinober A (1998b) Turbulence—beyond phenomenology. In: Benkadda S, Zaslavsky GM (eds) Chaos, kinetics and nonlinear dynamics in fluids and plasmas. Lecture notes in physics, vol 511. Springer, Berlin, pp 85–143Google Scholar
  114. Tsinober A (2000) Vortex stretching versus production of strain/dissipation. In: Hunt JCR, Vassilicos JC (eds) Turbulence structure and vortex dynamics. Cambridge University Press, Cambridge, pp 164–191zbMATHGoogle Scholar
  115. Tsinober A (2001) An informal introduction to turbulence. Kluwer, DordrechtzbMATHGoogle Scholar
  116. Tsinober A (2009) An informal conceptual introduction to turbulence. Springer, BerlinzbMATHCrossRefGoogle Scholar
  117. Tsinober A, Vedula P, Yeung PK (2001) Random Taylor hypothesis and the behavior of local and convective accelerations in isotropic turbulence. Phys Fluids 13:1974–1984zbMATHCrossRefGoogle Scholar
  118. Vassilicos JC (2015) Dissipation in turbulent flows. Ann Rev Fluid Mech 47:95–114MathSciNetCrossRefGoogle Scholar
  119. Vedula P, Yeung PK (1999) Similarity scaling of acceleration and pressure statistics in numerical simulations of isotropic turbulence. Phys Fluids 11:1208–1220zbMATHCrossRefGoogle Scholar
  120. von Kármán T (1937) The fundamentals of the statistical theory of turbulence. J Aeronaut Sci 4(4):131–138zbMATHCrossRefGoogle Scholar
  121. von Karman Th, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc R Soc Lond Ser A Math Phys Sci 164:192–215zbMATHCrossRefGoogle Scholar
  122. von Neumann J (1949) Recent theories of turbulence. In: Taub AH (ed) A report to the office of naval research. Collected works, vol 6. Pergamon, New York, pp 437–472Google Scholar
  123. Vukasinovich B, Rusak Z, Glezer A (2010) Dissipative small-scale actuation of a turbulent shear layer. J Fluid Mech 656:51–81zbMATHCrossRefGoogle Scholar
  124. Wei T, Willmarth WW (1989) Reynolds-number effects on the structure of a turbulent channel flow. J Fluid Mech 204:57–95CrossRefGoogle Scholar
  125. Wiener N (1958) Nonlinear problems in random theory. MIT Press, CambridgeGoogle Scholar
  126. Wilczek M (2016) Non-Gaussianity and intermittency in an ensemble of Gaussian fields. New J Phys 18:125009/1-9CrossRefGoogle Scholar
  127. Wilczek M, Meneveau C (2014) Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields. J Fluid Mech 756:191–225MathSciNetzbMATHCrossRefGoogle Scholar
  128. Wilczek M, Vlyakov DG, Lalesku CC (2017) Emergence of non-Gaussianity in turbulence. In: Örlü R, Talamelli A, Oberlack R, Peinke J (eds) Progress in turbulence VII: proceedings of the iTi conference in turbulence 2016. Springer, Berlin, pp 3–10Google Scholar
  129. Xu HT, Pumir A, Bodenschatz E (2016) Lagrangian view of time irreversibility of fluid turbulence. Sci China-Phys Mech Astron 59:614702/1-9Google Scholar
  130. Yeung PK, Zhai XM, Sreenivasan KR (2015) Extreme events in computational turbulence. PNAS 112(4):12633–12638CrossRefGoogle Scholar
  131. Yakhot V (2006) Probability densities in strong turbulence. Phys D 215:166–174MathSciNetzbMATHCrossRefGoogle Scholar
  132. Yasuda and Vassilicos (2018) Spatio-temporal intermittency of the turbulent energy cascade. J Fluid Mech: 853:235–252Google Scholar
  133. Zakharov VE (ed) (1990) What is integrability?. Springer, BerlinzbMATHGoogle Scholar
  134. Zeldovich YaB, Ruzmaikin AA, Sokoloff DD (1990) The almighty chance. World Scientific, SingaporezbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations