Nature of Turbulence

  • Arkady TsinoberEmail author


The main dispute about the origins and nature of turbulence involves a number of aspects and issues in the frame of the dichotomy of deterministic versus random. In science this dispute covers an enormous spectrum of themes such as philosophy of science, mathematics, physics and the other natural sciences. Fortunately, we do not have to venture into this ocean of debate and opposing and intermediate opinions. This is mainly because (as it now stands) turbulence is described by the NSE which are purely deterministic equations with extremely complex behavior enforcing use of statistical methods, but this does not mean that the nature of such systems is statistical in any/some sense as frequently claimed. The bottom line is that turbulence is only apparently random: the apparently random behavior of turbulence is a manifestation of properties of a purely deterministic law of nature in our case adequately described by NSE. An important point is that this complex behavior does not make this law either probabilistic or indeterminate.


  1. Arnold VI (1991) Kolmogorov’s hydrodynamics attractors. Proc R Soc Lond A 434:19–22MathSciNetCrossRefGoogle Scholar
  2. Biferale L, Lanotte AS, Federico Toschi F (2004) Effects of forcing in three-dimensional turbulent flows. Phys Rev Lett 92:094503CrossRefGoogle Scholar
  3. Bonnet JP (ed) (1996) Eddy structure identification. Springer, BerlinzbMATHGoogle Scholar
  4. Borel E (1909) Sur les probabilites denombrables et leurs applications arithmetiques. Rend Circ Mat Palermo 41:247–271CrossRefGoogle Scholar
  5. Bradshaw P (1994) Turbulence: the chief outstanding difficulty of our subject. Exp Fluids 16:203–216CrossRefGoogle Scholar
  6. Cimarelli A, De Angelis E, Jimenez J, Casciola CM (2016) Cascades and wall-normal fluxes in turbulent channel flows. J Fluid Mech 796:417–436MathSciNetCrossRefGoogle Scholar
  7. Davidson PA (2004) Turbulence. Oxford University Press, OxfordzbMATHGoogle Scholar
  8. Einstein A (1926) Letter to Max Born (4 December 1926); the Born-Einstein letters (translated by Irene Born). Walker and Company, New York. ISBN 0-8027-0326Google Scholar
  9. Elsinga GE, Marusic I (2010) Universal aspects of small-scale motions in turbulence. J Fluid Mech 662:514–539CrossRefGoogle Scholar
  10. Frenkiel FN, Klebanoff PS, Huang TT (1979) Grid turbulence in air and water. Phys Fluids 22:1606–1617CrossRefGoogle Scholar
  11. Foiaş C, Manley O, Rosa R, Temam R (2001) Navier–Stokes equations and turbulence. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. Galanti B, Tsinober A (2006) Physical space helicity properties in quasi-homogeneous forced turbulence. Phys Lett A 352:141–149CrossRefGoogle Scholar
  13. Gkioulekas E (2007) On the elimination of the sweeping interactions from theories of hydrodynamic turbulence. Phys. D 226:151–172MathSciNetCrossRefGoogle Scholar
  14. Goto T, Kraichnan RH (2004) Turbulence and Tsallis statistics. Phys. D 193:231–244MathSciNetCrossRefGoogle Scholar
  15. Guckenheimer J (1986) Strange attractors in fluids: another view. Annu Rev Fluid Mech 18:15–31MathSciNetCrossRefGoogle Scholar
  16. Gulitskii G, Kholmyansky M, Kinzlebach W, Lüthi B, Tsinober A, Yorish S (2007a) Velocity and temperature derivatives in high Reynolds number turbulent flows in the atmospheric surface layer. Facilities, methods and some general results. J Fluid Mech 589:57–81zbMATHGoogle Scholar
  17. Gulitskii G, Kholmyansky M, Kinzlebach W, Lüthi B, Tsinober A, Yorish S (2007b) Velocity and temperature derivatives in high Reynolds number turbulent flows in the atmospheric surface layer. Part 2. Accelerations and related matters. J Fluid Mech 589:83–102zbMATHGoogle Scholar
  18. Gulitskii G, Kholmyansky M, Kinzlebach W, Lüthi B, Tsinober A, Yorish S (2007c) Velocity and temperature derivatives in high Reynolds number turbulent flows in the atmospheric surface layer. Part 3. Temperature and joint statistics of temperature and velocity derivatives. J Fluid Mech 589:103–123zbMATHGoogle Scholar
  19. Hawking S, Penrose R (1996) The nature and time. Princeton University Press, Princeton, p 26zbMATHGoogle Scholar
  20. Holmes PJ, Berkooz G, Lumley JL (1996) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. Hopf E (1952) Statistical hydromechanics and functional calculus. J Ration Mech Anal 1:87–123MathSciNetzbMATHGoogle Scholar
  22. Hoyle F (1957) The black cloud. Harper, New YorkGoogle Scholar
  23. Jimenez J (2018) Coherent structures in wall-bounded turbulence. J Fluid Mech 842: P1–P100Google Scholar
  24. Keefe L (1990) In: Lumley JL (ed) Whither turbulence?. Springer, Berlin, p 189Google Scholar
  25. Keller L, Friedmann A (1925) Differentialgleichung für die turbulente Bewegung einer kompressiblen Flüssigkeit. In: Biezeno CB, Burgers JM (eds) Proceedings of the first international congress on applied mechanics. Waltman, Delft, pp 395–405Google Scholar
  26. Kolmogorov AN (1933) Grundbegriffe derWahrscheinlichkeitsrechnung. Springer, Berlin. English translation: Kolmogorov AN (1956) Foundations of the theory of probability, ChelseaGoogle Scholar
  27. Kolmogorov AN (1941b) Dissipation of energy in locally isotropic turbulence. Dokl Akad Nauk SSSR 32:19–21. For English translation see Tikhomirov VM (ed) (1991) Selected works of AN Kolmogorov, vol I. Kluwer, pp 324–327Google Scholar
  28. Kolmogorov AN (1956) The theory of probability. In: Aleksandrov AD et al (eds) Mathematics, its content, methods and meaning. AN SSSR, Moscow. English translation: Am Math Soc, pp 229–264 (1963)Google Scholar
  29. Kolmogorov AN (1985) Notes preceding the papers on turbulence in the first volume of his selected papers, vol I. Kluwer, Dordrecht, pp 487–488. English translation: Tikhomirov VM (ed) (1991) Selected works of AN KolmogorovGoogle Scholar
  30. Kraichnan RH (1959) The structure of isotropic turbulence at very high Reynolds numbers. J Fluid Mech 5:497–543MathSciNetCrossRefGoogle Scholar
  31. Kraichnan RH (1964) Kolmogorov’s hypotheses and Eulerian turbulence theory. Phys Fluids 7:1723–1734MathSciNetCrossRefGoogle Scholar
  32. Kraichnan RH, Chen S (1989) Is there a statistical mechanics of turbulence? Phys. D 37:160–172MathSciNetCrossRefGoogle Scholar
  33. Ladyzhenskaya OA (1969) Mathematical problems of the dynamics of viscous incompressible fluids. Gordon and Breach, New YorkGoogle Scholar
  34. Landau LD, Lifshits EM (1959) Fluid mechanics. Pergamon, New YorkGoogle Scholar
  35. Landau LD, Lifshits EM (1987) Fluid mechanics. Pergamon, New YorkzbMATHGoogle Scholar
  36. Laplace PS (1951) A philosophical essay on probabilities. Dover, New York. Translated by Truscott FW, Emory FL (Essai philosophique sur les probabilit és. Rééd., Bourgeois, Paris, 1986. Texte de la 5éme éd., 1825)Google Scholar
  37. Leray J (1934) Essai sur le mouvement d’un fluide visqueux emplissant l’espace. Acta Math 63:193–248MathSciNetCrossRefGoogle Scholar
  38. Leonov VP, Shiryaev AN (1960) Some problems in the spectral theory of higher order moments II. Theory Probab Appl 5:417–421MathSciNetCrossRefGoogle Scholar
  39. Lorenz EN (1972) Investigating the predictability of turbulent motion. In: Rosenblatt M, van Atta CC (eds) Statistical models and turbulence. Lecture notes in physics, vol 12, pp 195–204CrossRefGoogle Scholar
  40. Loskutov A (2010) Fascination of chaos. Phys Usp 53(12):1257–1280MathSciNetCrossRefGoogle Scholar
  41. Lumley JL (1970) Stochastic tools in turbulence. Academic, New YorkzbMATHGoogle Scholar
  42. Lumley JL (1972) Application of central limit theorems to turbulence problems. In: Rosenblatt M, van Atta C (eds) Statistical models and turbulence. Lecture notes in physics, vol 12. Springer, Berlin, pp 1–26Google Scholar
  43. Lumley JL (1981) Coherent structures in turbulence. In: Meyer R (ed) Transition and turbulence0. Academic Press, New York, pp 215–242CrossRefGoogle Scholar
  44. Lumley JL (1990) Future directions in turbulence research and the role of organized motion. In: Lumley JL (ed) Whither turbulence?. Springer, Berlin, pp 97–131CrossRefGoogle Scholar
  45. Lüthi B, Tsinober A, Kinzelbach W (2005) Lagrangian measurement of vorticity dynamics in turbulent flow. J Fluid Mech 528:87–118CrossRefGoogle Scholar
  46. Mollo-Christensen E (1973) Intermittency in large-scale turbulent flows. Annu Rev Fluid Mech 5:101–118CrossRefGoogle Scholar
  47. Monin AS, Yaglom AM (1971) Statistical fluid mechanics, vol 1. MIT Press, CambridgeGoogle Scholar
  48. Orszag SA (1977) Lectures on the statistical theory of turbulence. In: Balian R, Peube J-L (eds) Fluid dynamics. Gordon and Breach, New York, pp 235–374Google Scholar
  49. Orszag SA, Staroselsky I, Yakhot V (1993) Some basic challenges for large eddy simulation research. In: Orszag SA, Galperin B (eds) Large eddy simulation of complex engineering and geophysical flows. Cambridge University Press, Cambridge, pp 55–78Google Scholar
  50. Palmer TN, Hardaker PJ (2011) Introduction: handling uncertainty in science. Philos Trans R Soc Lond A 369:4681–4684CrossRefGoogle Scholar
  51. Poincare H (1952) Science and hypothesis. Dover, pp xxiii–xxivGoogle Scholar
  52. Ornstein S, Weiss B (1991) Statistical properties of chaotic systems. Bull Am Math Soc 24:11–116MathSciNetCrossRefGoogle Scholar
  53. Portela AF, Papadakis G, Vassilicos JC (2017) The turbulence cascade in the near wake of a square prism. J Fluid Mech 825:315–352MathSciNetCrossRefGoogle Scholar
  54. Ruelle D (1979) Microscopic fluctuations and turbulence. Phys Lett 72A(2):81–82MathSciNetCrossRefGoogle Scholar
  55. Tennekes H (1975) Eulerian and Lagrangian time microscales in isotropic turbulence. J Fluid Mech 67:561–567CrossRefGoogle Scholar
  56. Tritton DJ (1988) Physical fluid dynamics, 2nd edn. Clarendon, OxfordzbMATHGoogle Scholar
  57. Tsinober A (2001) An informal introduction to turbulence. Kluwer, DordrechtzbMATHGoogle Scholar
  58. Tsinober A, Vedula P, Yeung PK (2001) Random Taylor hypothesis and the behaviour of local and convective accelerations in isotropic turbulence. Phys Fluids 13:1974–1984CrossRefGoogle Scholar
  59. Tsinober A (2009) An informal conceptual introduction to turbulence. Springer, BerlinCrossRefGoogle Scholar
  60. Vishik MJ, Fursikov AV (1988) Mathematical problems of statistical hydromechanics. Kluwer, DordrechtCrossRefGoogle Scholar
  61. von Karman Th, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc R Soc Lond Ser A, Math Phys Sci 164:192–215CrossRefGoogle Scholar
  62. von Neumann J (1949) Recent theories of turbulence. In: Taub AH (ed) A report to the office of naval research. Collected works, vol 6. Pergamon, New York, pp 437–472Google Scholar
  63. Waleffe F (1992) The nature of triad interactions in homogeneous turbulence. Phys Fluids A 4:350–363MathSciNetCrossRefGoogle Scholar
  64. Wei L, Elsinga GE, Brethouwer G, Schlatter P, Johansson AV (2014) Universality and scaling phenomenology of small-scale turbulence in wall-bounded flows. Phys Fluids 26: 035107/1–12CrossRefGoogle Scholar
  65. Wiener N (1938) Homogeneous chaos. Am J Math 60:897–936MathSciNetCrossRefGoogle Scholar
  66. Yasuda and Vassilicos (2018) Spatio-temporal intermittency of the turbulent energy cascade. J Fluid Mech:853: 235–252Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations